1
|
Niu L, Hu W, Wang F, Shaker M, Yang X. Integrated transcriptomic and metabolomic analyses elucidate the mechanism by which grafting impacts potassium utilization efficiency in tobacco. BMC PLANT BIOLOGY 2025; 25:94. [PMID: 39844046 PMCID: PMC11756066 DOI: 10.1186/s12870-025-06123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Potassium plays a crucial role in determining the quality of flue-cured tobacco leaves. Our prior investigations have demonstrated that using potassium-efficient rootstocks through grafting offers a viable solution to the prevalent issue of low potassium levels in Chinese flue-cured tobacco leaves. Nevertheless, the specific molecular mechanisms responsible for the increase in potassium content following grafting in tobacco leaves have yet to be elucidated. This study revealing for the first time how grafting improves potassium utilization efficiency through combined transcriptome and metabolome analysis. RESULTS This study selected Wufeng NO. 2, a potassium-efficient variety, and Yunyan 87, a main cultivar, as the research subjects to investigate the underlying reasons for differential potassium utilization efficiency among different tobacco rootstocks through transcriptome and metabolic data analysis of grafted tobacco. The results showed a considerable increment of 90.1% in the potassium content of the grafted tobacco leaves. Overall, 2044 differentially expressed genes were identified through transcriptome analysis, with the majority being enriched in plant hormone signal transduction and the MAPK pathway. Metabolome analysis revealed 175 metabolites with significant differences, primarily involving primary metabolites such as amino acids and carbohydrates. Among these, there was an increase in the metabolites levels related to glycolysis, amino acid metabolism, and the TCA cycle pathway in grafted tobacco leaves. The key metabolites and genes in the above pathways were selected for Mantel-Pearson correlation analysis, leading to the identification of 2 genes and 3 metabolites, including IAA, CIP1, D-fructose, Fumaric acid and Oxoglutaric acid, that were significantly associated with the increased potassium content in grafted tobacco. CONCLUSIONS This study uncovers the intricate molecular mechanism behind grafting tobacco to enhance potassium utilization efficiency, thereby offering theoretical support for enhancing crop nutrient utilization efficiency through grafting technology.
Collapse
Affiliation(s)
- Lulu Niu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Hu
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Fazhan Wang
- Vocational Training College of China National Tobacco Corporation, Zhengzhou, 450008, China
| | - Majid Shaker
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Xin Yang
- College of Economic and Management, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Pi K, Luo W, Mo Z, Duan L, Ke Y, Wang P, Zeng S, Huang Y, Liu R. Overdominant expression of related genes of ion homeostasis improves K + content advantage in hybrid tobacco leaves. BMC PLANT BIOLOGY 2022; 22:335. [PMID: 35820807 PMCID: PMC9277951 DOI: 10.1186/s12870-022-03719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Potassium(K+) plays a vital role in improving the quality of tobacco leaves. However, how to improve the potassium content of tobacco leaves has always been a difficult problem in tobacco planting. K+ content in tobacco hybrid is characterized by heterosis, which can improve the quality of tobacco leaves, but its underlying molecular genetic mechanisms remain unclear. RESULTS Through a two-year field experiment, G70×GDH11 with strong heterosis and K326×GDH11 with weak heterosis were screened out. Transcriptome analyses revealed that 80.89% and 57.28% of the differentially expressed genes (DEGs) in the strong and weak heterosis combinations exhibited an overdominant expression pattern, respectively. The genes that up-regulated the overdominant expression in the strong heterosis hybrids were significantly enriched in the ion homeostasis. Genes involved in K+ transport (KAT1/2, GORK, AKT2, and KEA3), activity regulation complex (CBL-CIPK5/6), and vacuole (TPKs) genes were overdominant expressed in strong heterosis hybrids, which contributed to K+ homeostasis and heterosis in tobacco leaves. CONCLUSIONS K+ homeostasis and accumulation in tobacco hybrids were collectively improved. The overdominant expression of K+ transport and homeostasis-related genes conducted a crucial role in the heterosis of K+ content in tobacco leaves.
Collapse
Affiliation(s)
- Kai Pi
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
| | - Wen Luo
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
| | - Zejun Mo
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
- College of Agriculture, Guizhou University, 550025, Guiyang, P. R. China
| | - Lili Duan
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
- College of Agriculture, Guizhou University, 550025, Guiyang, P. R. China
| | - Yuzhou Ke
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
| | - Pingsong Wang
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
- College of Agriculture, Guizhou University, 550025, Guiyang, P. R. China
| | - Shuaibo Zeng
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China
| | - Yin Huang
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China.
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China.
| | - Renxiang Liu
- College of Tobacco, Guizhou University, Huaxi District, Guizhou Province, 550025, Guiyang City, P. R. China.
- Key Laboratory for Tobacco Quality Research Guizhou Province, Guizhou University, 550025, Guiyang, P. R. China.
| |
Collapse
|
3
|
Ahammed GJ, Chen Y, Liu C, Yang Y. Light regulation of potassium in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:316-324. [PMID: 34954566 DOI: 10.1016/j.plaphy.2021.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Essential macronutrient potassium (K) and environmental signal light regulate a number of vital plant biological processes related to growth, development, and stress response. Recent research has shown connections between the perception of light and the regulation of K in plants. Photoreceptors-mediated wavelength-specific light perception activates signaling cascades which mediate stomatal movement by altering K+influx/efflux via K+ channels in the guard cells. The quality, intensity, and duration of light affect the regulation of K nutrition and crop quality. Blue/red illumination or red combined blue light treatment increases the expression levels of K transporter genes, K uptake and accumulation, leading to increased lycopene synthesis and improved fruit color in tomato. Despite the commonalities of light and K in multiple functions, our understanding of light regulation of K and associated physiological and molecular processes is fragmentary. In this review, we take a look at the light-controlled K uptake and utilization in plants and propose working models to show potential mechanisms. We discuss major light signaling components, their possible involvement in K nutrition, stomatal movement and crop quality by linking the perception of light signal and subsequent regulation of K. We also pose some outstanding questions to guide future research. Our analysis suggests that the enhancement of K utilization efficiency by manipulation of light quality and light signaling components can be a promising strategy for K management in crop production.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Yue Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chaochao Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212021, China
| | - Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Mao Y, Yin Y, Cui X, Wang H, Su X, Qin X, Liu Y, Hu Y, Shen X. Detection of Root Physiological Parameters and Potassium and Calcium Currents in the Rhizoplane of the Apple Rootstock Superior Line 12-2 With Improved Apple Replant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:734430. [PMID: 34975935 PMCID: PMC8718911 DOI: 10.3389/fpls.2021.734430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The cultivation of resistant rootstocks is one of the more effective ways to mitigate apple replant disease (ARD). We performed an ion current test, a pot experiment, and a pathogen infection test on the apple rootstocks 12-2 (self-named), T337, and M26. The ion current test showed that exposure to ARD soil extract for 30 min had a significant effect on K+ ion currents at the meristem, elongation, and mature zones of the M26 rhizoplane and on Ca2+ currents in the meristem and elongation zones. ARD also had a significant effect on Ca2+ currents in the meristem, elongation, and mature zones of the T337 rhizoplane. Exposure to ARD soil extract for 5 min had a significant effect on K+ currents in the meristem, elongation, and mature zones of 12-2 and on the Ca2+ currents in the elongation and mature zones. Compared to a 5-min exposure, a 30-min exposure to ARD extract had a less pronounced effect on K+ and Ca2+ currents in the 12-2 rhizoplane. The pot experiment showed that ARD soil had no significant effect on any root architectural or physiological parameters of 12-2. By contrast, ARD soil significantly reduced some root growth indices and the dry and fresh weights of T337 and M26 compared with controls on sterilized soil. ARD also had a significant effect on root metabolic activity, root antioxidant enzyme activity (except superoxide dismutase for T337), and malondialdehyde content of T337 and M26. Pathogen infection tests showed that Fusarium proliferatum MR5 significantly affected the root structure and reduced the root metabolic activity of T337 and M26. It also reduced their root antioxidant enzyme activities (except catalase for T337) and significantly increased the root malondialdehyde content, reactive oxygen levels, and proline and soluble sugar contents. By contrast, MR5 had no such effects on 12-2. Based on these results, 12-2 has the potential to serve as an important ARD-resistant rootstock.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiang Shen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
5
|
Yang D, Li F, Yi F, Eneji AE, Tian X, Li Z. Transcriptome Analysis Unravels Key Factors Involved in Response to Potassium Deficiency and Feedback Regulation of K + Uptake in Cotton Roots. Int J Mol Sci 2021; 22:3133. [PMID: 33808570 PMCID: PMC8003395 DOI: 10.3390/ijms22063133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 01/19/2023] Open
Abstract
To properly understand cotton responses to potassium (K+) deficiency and how its shoot feedback regulates K+ uptake and root growth, we analyzed the changes in root transcriptome induced by low K+ (0.03 mM K+, lasting three days) in self-grafts of a K+ inefficient cotton variety (CCRI41/CCRI41, scion/rootstock) and its reciprocal grafts with a K+ efficient variety (SCRC22/CCRI41). Compared with CCRI41/CCRI41, the SCRC22 scion enhanced the K+ uptake and root growth of CCRI41 rootstock. A total of 1968 and 2539 differently expressed genes (DEGs) were identified in the roots of CCRI41/CCRI41 and SCRC22/CCRI41 in response to K+ deficiency, respectively. The overlapped and similarly (both up- or both down-) regulated DEGs in the two grafts were considered the basic response to K+ deficiency in cotton roots, whereas the DEGs only found in SCRC22/CCRI41 (1954) and those oppositely (one up- and the other down-) regulated in the two grafts might be the key factors involved in the feedback regulation of K+ uptake and root growth. The expression level of four putative K+ transporter genes (three GhHAK5s and one GhKUP3) increased in both grafts under low K+, which could enable plants to cope with K+ deficiency. In addition, two ethylene response factors (ERFs), GhERF15 and GhESE3, both down-regulated in the roots of CCRI41/CCRI41 and SCRC22/CCRI41, may negatively regulate K+ uptake in cotton roots due to higher net K+ uptake rate in their virus-induced gene silencing (VIGS) plants. In terms of feedback regulation of K+ uptake and root growth, several up-regulated DEGs related to Ca2+ binding and CIPK (CBL-interacting protein kinases), one up-regulated GhKUP3 and several up-regulated GhNRT2.1s probably play important roles. In conclusion, these results provide a deeper insight into the molecular mechanisms involved in basic response to low K+ stress in cotton roots and feedback regulation of K+ uptake, and present several low K+ tolerance-associated genes that need to be further identified and characterized.
Collapse
Affiliation(s)
- Doudou Yang
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fangjun Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fei Yi
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar 540271, Nigeria
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|