1
|
Mamaeva A, Makeeva A, Ganaeva D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:378. [PMID: 39942939 PMCID: PMC11820598 DOI: 10.3390/plants14030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Plant growth and development are inextricably connected with rhizosphere organisms. Plants have to balance between strong defenses against pathogens while modulating their immune responses to recruit beneficial organisms such as bacteria and fungi. In recent years, there has been increasing evidence that regulatory peptides are essential in establishing these symbiotic relationships, orchestrating processes that include nutrient acquisition, root architecture modification, and immune modulation. In this review, we provide a comprehensive summary of the peptide families that facilitate beneficial relationships between plants and rhizosphere organisms.
Collapse
Affiliation(s)
- Anna Mamaeva
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.M.)
| | | | | |
Collapse
|
2
|
Wei F, Liu Y, Zhou D, Zhao W, Chen Z, Chen D, Li Y, Zhang XX. Transcriptomic Identification of a Unique Set of Nodule-Specific Cysteine-Rich Peptides Expressed in the Nitrogen-Fixing Root Nodule of Astragalus sinicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:893-905. [PMID: 35762679 DOI: 10.1094/mpmi-03-22-0054-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Legumes in the inverted repeat-lacking clade (IRLC) each produce a unique set of nodule-specific cysteine-rich (NCR) peptides, which act in concert to determine the terminal differentiation of nitrogen-fixing bacteroid. IRLC legumes differ greatly in their numbers of NCR and sequence diversity. This raises the significant question how bacteroid differentiation is collectively controlled by the specific NCR repertoire of an IRLC legume. Astragalus sinicus is an IRLC legume that forms indeterminate nodules with its microsymbiont Mesorhizobium huakuii 7653R. Here, we performed transcriptome analysis of root and nodule samples at 3, 7, 14, 28 days postinoculation with M. huakuii 7653R and its isogenic ∆bacA mutant. BacA is a broad-specificity peptide transporter required for the host-derived NCRs to target rhizobial cells. A total of 167 NCRs were identified in the RNA transcripts. Comparative sequence and electrochemical analysis revealed that A. sinicus NCRs (AsNCRs) are dominated by a unique cationic group (termed subgroup C), whose mature portion is relatively long (>60 amino acids) and phylogenetically distinct and possessing six highly conserved cysteine residues. Subsequent functional characterization showed that a 7653R variant harboring AsNCR083 (a representative of subgroup C AsNCR) displayed significant growth inhibition in laboratory media and formed ineffective white nodules on A. sinicus with irregular symbiosomes. Finally, bacterial two-hybrid analysis led to the identification of GroEL1 and GroEL3 as the molecular targets of AsNCR067 and AsNCR076. Together, our data contribute to a systematic understanding of the NCR repertoire associated with the A. sinicus and M. huakuii symbiosis. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Donglai Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenlong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhennan Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dason Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University at Albany, Auckland 0745, New Zealand
| |
Collapse
|
3
|
Transcriptomic analysis of Mesoamerican and Andean Phaseolus vulgaris accessions revealed mRNAs and lncRNAs associated with strain selectivity during symbiosis. Sci Rep 2022; 12:2614. [PMID: 35173231 PMCID: PMC8850587 DOI: 10.1038/s41598-022-06566-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 01/28/2022] [Indexed: 12/29/2022] Open
Abstract
Legume plants establish a nitrogen-fixing symbiosis with soil bacteria known as rhizobia. Compatibility between legumes and rhizobia is determined at species-specific level, but variations in the outcome of the symbiotic process are also influenced by the capacity of the plant to discriminate and select specific strains that are better partners. We compared the transcriptional response of two genetically diverse accessions of Phaseolus vulgaris from Mesoamerica and South Andes to Rhizobium etli strains that exhibit variable degrees of symbiotic affinities. Our results indicate that the plant genotype is the major determinant of the transcriptional reprogramming occurring in roots at early stages of the symbiotic interaction. Differentially expressed genes (DEGs) regulated in the Mesoamerican and the Andean accessions in response to specific strains are different, but they belong to the same functional categories. The common and strain-specific transcriptional responses to rhizobia involve distinct transcription factors and cis-elements present in the promoters of DEGs in each accession, showing that diversification and domestication of common bean at different geographic regions influenced the evolution of symbiosis differently in each genetic pool. Quantitative PCR analysis validated our transcriptional datasets, which constitute a valuable source of coding and non-coding candidate genes to further unravel the molecular determinants governing the mechanisms by which plants select bacterial strains that produce a better symbiotic outcome.
Collapse
|
4
|
Ajilogba CF, Olanrewaju OS, Babalola OO. Improving Bambara Groundnut Production: Insight Into the Role of Omics and Beneficial Bacteria. FRONTIERS IN PLANT SCIENCE 2022; 13:836133. [PMID: 35310649 PMCID: PMC8929175 DOI: 10.3389/fpls.2022.836133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 05/05/2023]
Abstract
With the rise in the world population, environmental hazards caused by chemical fertilizers, and a decrease in food supply due to global climate change, food security has become very pertinent. In addition, considerable parts of agriculture lands have been lost to urbanization. It has therefore been projected that at the present rate of population increase coupled with the other mentioned factors, available food will not be enough to feed the world. Hence, drastic approach is needed to improve agriculture output as well as human sustainability. Application of environmentally sustainable approach, such as the use of beneficial microbes, and improved breeding of underutilized legumes are one of the proposed sustainable ways of achieving food security. Microbiome-assisted breeding in underutilized legumes is an untapped area with great capabilities to improve food security. Furthermore, revolution in genomics adaptation to crop improvement has changed the approach from conventional breeding to more advanced genomic-assisted breeding on the host plant and its microbiome. The use of rhizobacteria is very important to improving crop yield, especially rhizobacteria from legumes like Bambara groundnut (BGN). BGN is an important legume in sub-Saharan Africa with high ability to tolerate drought and thrive well in marginalized soils. BGN and its interaction with various rhizobacteria in the soil could play a vital role in crop production and protection. This review focus on the importance of genomics application to BGN and its microbiome with the view of setting a potential blueprint for improved BGN breeding through integration of beneficial bacteria.
Collapse
Affiliation(s)
- Caroline Fadeke Ajilogba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
- Division of Agrometeorology, Agricultural Research Council, Natural Resources and Engineering, Pretoria, South Africa
| | - Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng, South Africa
- *Correspondence: Olubukola Oluranti Babalola,
| |
Collapse
|
5
|
Gourion B, Ratet P. Avoidance of detrimental defense responses in beneficial plant-microbe interactions. Curr Opin Biotechnol 2021; 70:266-272. [PMID: 34252756 DOI: 10.1016/j.copbio.2021.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
In the environment microbes interact with plants and provide them with benefits that include protection against biotic and abiotic stresses as well as improved nutrition. However, plants are also exposed to parasites and pathogens. To manage appropriate responses, evolution has resulted in improved tolerance of plants to beneficial microbes while keeping the ability to recognize detrimental ones and to develop defense responses. Here we review the mechanisms involved in these interactions. We also discuss how the interactions might be handled to improve crop resistance to pathogens without losing the ability to establish beneficial interactions.
Collapse
Affiliation(s)
- Benjamin Gourion
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France.
| |
Collapse
|
6
|
Zhao Z, Zhang W, Liu Y, Li S, Yao W, Sun X, Li S, Ma L, Sun J, Yang Q, Li Y, Yang G, Wang ZY, Cong L. De novo hydroponics system efficiency for the cuttings of alfalfa ( Medicago sativa L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1413-1421. [PMID: 34220046 PMCID: PMC8212189 DOI: 10.1007/s12298-021-00995-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 05/11/2023]
Abstract
The legume plant alfalfa (Medicago sativa L.) is a widely cultivated perennial forage due to its high protein content, palatability, and strong adaptability to diverse agro-ecological zones. Alfalfa is a self-incompatible cross-pollinated autotetraploid species with tetrasomic inheritance. Therefore, maintaining excellent traits through seed reproduction is a prime challenge in alfalfa. However, the cutting propagation technology could enable consistent multiplication of quality plants that are genetically identical to the parent plant. The current study aimed to develop a simple, cost-effective, reproducible, and efficient hydroponic cutting method to preserve alfalfa plants and for molecular research. In this study, alfalfa landrace 'Wudi' was grown in hydroponics for 30 days and used as source material for cuttings. The top, middle and bottom sections of its stem were used as cuttings. The rooting rate, root length, and stem height of the different stem sections were compared to determine the best segment for alfalfa propagation in four nutrient treatments (HM, HM + 1/500H, HM + 1/1000H and d HM + 1/2000H). After 21 days of culture, the rooting rates of all the three stem types under four cutting nutrient solutions were above 78%. The rooting rate of the middle and bottom parts in HM + 1/1000 H and HM + 1/2000 H nutrient solutions reached more than 93%, with a higher health survey score (> 4.70). In conclusion, this study developed a de novo cutting propagation method that can be used to conserve and propagate germplasm in breeding programs and research. This method is a new report on the cutting propagation of alfalfa by hydroponics, which could supplement the existing cutting propagation methods.
Collapse
Affiliation(s)
- Zhili Zhao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Wenyu Zhang
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Yang Liu
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Shuai Li
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Wu Yao
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xiaohui Sun
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Siyu Li
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Lichao Ma
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Juan Sun
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Science, Beijing, 100193 China
| | - Yongxiang Li
- Qingdao Empyrean Intelligent Agriculture Group Co, Ltd, Qingdao, 266109 China
| | - Guofeng Yang
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Zeng-Yu Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| | - Lili Cong
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 266109 China
| |
Collapse
|
7
|
Zhao W, Zhu H, Wei F, Zhou D, Li Y, Zhang XX. Investigating the Involvement of Cytoskeletal Proteins MreB and FtsZ in the Origin of Legume-Rhizobial Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:547-559. [PMID: 33596109 DOI: 10.1094/mpmi-10-20-0299-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rhizobia are rod-shaped bacteria that form nitrogen-fixing root nodules on leguminous plants; however, they don't carry MreB, a key determinant of rod-like cell shape. Here, we introduced an actin-like mreB homolog from a pseudomonad into Mesorhizobium huakuii 7653R (a microsymbiont of Astragalus sinicus L.) and examined the molecular, cellular, and symbiotic phenotypes of the resultant mutant. Exogenous mreB caused an enlarged cell size and slower growth in laboratory medium. However, the mutant formed small, ineffective nodules on A. sinicus (Nod+ Fix-), and rhizobial cells in the infection zone were unable to differentiate into bacteroids. RNA sequencing analysis also revealed minor effects of mreB on global gene expression in free-living cells but larger effects for cells grown in planta. Differentially expressed nodule-specific genes include cell cycle regulators such as the tubulin-like ftsZ1 and ftsZ2. Unlike the ubiquitous FtsZ1, an FtsZ2 homolog was commonly found in Rhizobium, Sinorhizobium, and Mesorhizobium spp. but not in closely related nonsymbiotic species. Bacterial two-hybrid analysis revealed that MreB interacts with FtsZ1 and FtsZ2, which are targeted by the host-derived nodule-specific cysteine-rich peptides. Significantly, MreB mutation D283A disrupted the protein-protein interactions and restored the aforementioned phenotypic defects caused by MreB in M. huakuii. Together, our data indicate that MreB is detrimental for modern rhizobia and its interaction with FtsZ1 and FtsZ2 causes the symbiotic process to cease at the late stage of bacteroid differentiation. These findings led to a hypothesis that loss of mreB in the common ancestor of members of Rhizobiales and subsequent acquisition of ftsZ2 are critical evolutionary steps leading to legume-rhizobial symbiosis.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wenlong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Huixia Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Feng Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Donglai Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University, Auckland 0745, New Zealand
| |
Collapse
|