1
|
Mishra S, Gudkov D, Lakhneko O, Baráth P, Španiel S, Danchenko M. Chronic ionizing radiation might suppress resistance to pathogens in aquatic plants without substantial oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179614. [PMID: 40373680 DOI: 10.1016/j.scitotenv.2025.179614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
Chronic ionizing radiation causes elevated levels of DNA damage and reactive oxygen species in plants. Aquatic ecosystems in Chornobyl zone, a major radiological disaster site, are contaminated by harmful radionuclides. We focused on explaining the biochemical mechanisms responsible for the susceptibility of a wild aquatic plant (common reed, Phragmites australis) grown in Chornobyl zone to biotic stress. The fungal infection assay indicated that life in a radionuclide-contaminated environment might compromise plant immunity. Proteome profiling identified 1,867 proteins and we selected several dozen proteins with consistently higher and lower abundance in the samples from the littoral of contaminated lakes by hierarchical clustering. Discordant expression of coding genes pointed to posttranscriptional regulation. Proteins that accumulated in reed upon chronic irradiation suggested a biochemically stable phenotype with effective protection against reactive carbonyls. Simultaneously, proteins that depleted in plants collected from the littoral of radiologically contaminated lakes indicated worse stress resilience and enhanced susceptibility to biotic agents. Furthermore, the quantification of antioxidant enzyme activities and carbonylated proteins rebutted the idea about substantial oxidative stress in chronically irradiated plants. We advocate the necessity to consider increased pathogen sensitivity while developing policies for the management of radionuclide-contaminated areas.
Collapse
Affiliation(s)
- Shubhi Mishra
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Akademická 2, 950 07 Nitra, Slovakia.
| | - Dmitri Gudkov
- Institute of Hydrobiology, National Academy of Sciences of Ukraine, Volodymyra Ivasiuka 12, 04210 Kyiv, Ukraine.
| | - Olha Lakhneko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Akademická 2, 950 07 Nitra, Slovakia.
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | - Stanislav Španiel
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia.
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Akademická 2, 950 07 Nitra, Slovakia.
| |
Collapse
|
2
|
Jiang X, Koenig AM, Walker BJ, Hu J. A cytosolic glyoxylate shunt complements the canonical photorespiratory pathway in Arabidopsis. Nat Commun 2025; 16:4057. [PMID: 40307224 PMCID: PMC12043991 DOI: 10.1038/s41467-025-59349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/19/2025] [Indexed: 05/02/2025] Open
Abstract
Photorespiration functions in part to support photosynthetic performance, especially under stress such as high light, yet the underlying mechanisms are poorly understood. To identify modulators of photorespiration under high light, we have isolated genetic suppressors of the photorespiratory mutant hpr1 (hydroxypyruvate reductase 1) from Arabidopsis. A suppressor that partially rescues hpr1 is mapped to GLYR1, which encodes the cytosolic glyoxylate reductase 1 that converts glyoxylate to glycolate. Independent glyr1 mutants also partially rescue hpr1 and another photorespiratory mutant, catalase 2. Our genetic, transcriptomic and metabolic profiling analyses together reveal a connection between cytosolic glyoxylate and a non-canonical photorespiratory route mediated by HPR2, which we name the photorespiratory glyoxylate shunt. This shunt complements the canonical photorespiratory pathway and is especially critical when high photorespiratory fluxes are required and when the major photorespiratory pathway is deficient. Our findings support the metabolic flexibility of photorespiration and may help to improve crop performance under stress.
Collapse
Affiliation(s)
- Xiaotong Jiang
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Amanda M Koenig
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Yang Q, Zheng Y, Li X. Integrative RNA-seq and ATAC-seq analysis unveils antioxidant defense mechanisms in salt-tolerant rice variety Pokkali. BMC PLANT BIOLOGY 2025; 25:364. [PMID: 40114057 PMCID: PMC11924786 DOI: 10.1186/s12870-025-06387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Salt stress is one of the most significant environmental challenges, severely impacting rice growth and yield. While different rice varieties exhibit varying levels of tolerance to salinity, Pokkali, a traditional salt-tolerant variety, stands out for its ability to thrive in saline conditions. Understanding the molecular and physiological mechanisms that underpin this tolerance is essential for breeding and developing rice varieties with enhanced resilience to salt stress. METHODS In this study, we selected the salt-tolerant rice variety Pokkali and the salt-sensitive variety IR29 for a controlled saline stress experiment. Plants were subjected to a 150 mM NaCl treatment for 7 days, after which leaf samples were collected from both varieties. Antioxidant physiological parameters were measured, and RNA-seq and ATAC-seq analyses were conducted to explore gene expression and chromatin accessibility. Key genes identified through sequencing were validated using RT-qPCR. RESULTS Under salt stress, Pokkali demonstrated strong tolerance and a higher antioxidant capacity compared to IR29, as evidenced by increased survival rates and fresh weight. Pokkali also showed elevated activity of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase, along with reduced accumulation of hydrogen peroxide. Transcriptomic and ATAC-seq analyses revealed that Pokkali's upregulated genes were significantly enriched in pathways related to redox homeostasis. These genes were also involved in metabolic processes such as glycan biosynthesis, amino acid metabolism, carbohydrate metabolism, and energy production. Furthermore, ATAC-seq analysis indicated increased chromatin accessibility in the promoter regions of key antioxidant genes under salt stress in Pokkali, reflecting enhanced transcriptional activity. Four key antioxidant-related genes-MnSOD1, OsAPx7, OsGR1, and Osppc3-were identified and validated by qPCR, showing significant upregulation in Pokkali. ATAC-seq data further supported that these genes had increased promoter accessibility under salt stress, aligning with the RNA-seq findings. CONCLUSION This study underscores the critical role of antioxidant defense mechanisms in conferring salt tolerance in Pokkali. The identification of key genes involved in redox regulation provides valuable insights into the molecular basis of salt tolerance, offering potential targets for the genetic improvement of salt-sensitive rice varieties through breeding programs.
Collapse
Affiliation(s)
- Qiaoyu Yang
- School of Life Science, Huizhou University, Huizhou, 516007, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yutong Zheng
- School of Life Science, Huizhou University, Huizhou, 516007, Guangdong, China
| | - Xitao Li
- School of Life Science, Huizhou University, Huizhou, 516007, Guangdong, China.
| |
Collapse
|
4
|
Ciereszko I, Kuźniak E. Photorespiratory Metabolism and Its Regulatory Links to Plant Defence Against Pathogens. Int J Mol Sci 2024; 25:12134. [PMID: 39596201 PMCID: PMC11595106 DOI: 10.3390/ijms252212134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
When plants face biotic stress, the induction of defence responses imposes a massive demand for carbon and energy resources, which could decrease the reserves allocated towards growth. These growth-defence trade-offs have important implications for plant fitness and productivity and influence the outcome of plant-pathogen interactions. Biotic stress strongly affects plant cells' primary metabolism, including photosynthesis and respiration, the main source of energy and carbon skeletons for plant growth, development, and defence. Although the nature of photosynthetic limitations imposed by pathogens is variable, infection often increases photorespiratory pressure, generating conditions that promote ribulose-1,5-bisphosphate oxygenation, leading to a metabolic shift from assimilation to photorespiration. Photorespiration, the significant metabolic flux following photosynthesis, protects the photosynthetic apparatus from photoinhibition. However, recent studies reveal that its role is far beyond photoprotection. The intermediates of the photorespiratory cycle regulate photosynthesis, and photorespiration interacts with the metabolic pathways of nitrogen and sulphur, shaping the primary metabolism for stress responses. This work aims to present recent insights into the integration of photorespiration within the network of primary metabolism under biotic stress. It also explores the potential implications of regulating photosynthetic-photorespiratory metabolism for plant defence against bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Iwona Ciereszko
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
5
|
Bauwe H. Photorespiration - Rubisco's repair crew. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153899. [PMID: 36566670 DOI: 10.1016/j.jplph.2022.153899] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The photorespiratory repair pathway (photorespiration in short) was set up from ancient metabolic modules about three billion years ago in cyanobacteria, the later ancestors of chloroplasts. These prokaryotes developed the capacity for oxygenic photosynthesis, i.e. the use of water as a source of electrons and protons (with O2 as a by-product) for the sunlight-driven synthesis of ATP and NADPH for CO2 fixation in the Calvin cycle. However, the CO2-binding enzyme, ribulose 1,5-bisphosphate carboxylase (known under the acronym Rubisco), is not absolutely selective for CO2 and can also use O2 in a side reaction. It then produces 2-phosphoglycolate (2PG), the accumulation of which would inhibit and potentially stop the Calvin cycle and subsequently photosynthetic electron transport. Photorespiration removes the 2-PG and in this way prevents oxygenic photosynthesis from poisoning itself. In plants, the core of photorespiration consists of ten enzymes distributed over three different types of organelles, requiring interorganellar transport and interaction with several auxiliary enzymes. It goes together with the release and to some extent loss of freshly fixed CO2. This disadvantageous feature can be suppressed by CO2-concentrating mechanisms, such as those that evolved in C4 plants thirty million years ago, which enhance CO2 fixation and reduce 2PG synthesis. Photorespiration itself provided a pioneer variant of such mechanisms in the predecessors of C4 plants, C3-C4 intermediate plants. This article is a review and update particularly on the enzyme components of plant photorespiration and their catalytic mechanisms, on the interaction of photorespiration with other metabolism and on its impact on the evolution of photosynthesis. This focus was chosen because a better knowledge of the enzymes involved and how they are embedded in overall plant metabolism can facilitate the targeted use of the now highly advanced methods of metabolic network modelling and flux analysis. Understanding photorespiration more than before as a process that enables, rather than reduces, plant photosynthesis, will help develop rational strategies for crop improvement.
Collapse
Affiliation(s)
- Hermann Bauwe
- University of Rostock, Plant Physiology, Albert-Einstein-Straße 3, D-18051, Rostock, Germany.
| |
Collapse
|
6
|
Tian T, Chen L, Ai Y, He H. Selection of Candidate Genes Conferring Blast Resistance and Heat Tolerance in Rice through Integration of Meta-QTLs and RNA-Seq. Genes (Basel) 2022; 13:224. [PMID: 35205268 PMCID: PMC8871662 DOI: 10.3390/genes13020224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/04/2023] Open
Abstract
Due to global warming, high temperature is a significant environmental stress for rice production. Rice (Oryza sativa L.), one of the most crucial cereal crops, is also seriously devastated by Magnaporthe oryzae. Therefore, it is essential to breed new rice cultivars with blast and heat tolerance. Although progress had been made in QTL mapping and RNA-seq analysis in rice in response to blast and heat stresses, there are few reports on simultaneously mining blast-resistant and heat-tolerant genes. In this study, we separately conducted meta-analysis of 839 blast-resistant and 308 heat-tolerant QTLs in rice. Consequently, 7054 genes were identified in 67 blast-resistant meta-QTLs with an average interval of 1.00 Mb. Likewise, 6425 genes were obtained in 40 heat-tolerant meta-QTLs with an average interval of 1.49 Mb. Additionally, using differentially expressed genes (DEGs) in the previous research and GO enrichment analysis, 55 DEGs were co-located on the common regions of 16 blast-resistant and 14 heat-tolerant meta-QTLs. Among, OsChib3H-c, OsJAMyb, Pi-k, OsWAK1, OsMT2b, OsTPS3, OsHI-LOX, OsACLA-2 and OsGS2 were the significant candidate genes to be further investigated. These results could provide the gene resources for rice breeding with excellent resistance to these 2 stresses, and help to understand how plants response to the combination stresses of blast fungus and high temperature.
Collapse
Affiliation(s)
| | | | - Yufang Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.T.); (L.C.)
| | - Huaqin He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.T.); (L.C.)
| |
Collapse
|
7
|
Shelp BJ, Aghdam MS, Flaherty EJ. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1939. [PMID: 34579473 PMCID: PMC8468876 DOI: 10.3390/plants10091939] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Global climate change and associated adverse abiotic and biotic stress conditions affect plant growth and development, and agricultural sustainability in general. Abiotic and biotic stresses reduce respiration and associated energy generation in mitochondria, resulting in the elevated production of reactive oxygen species (ROS), which are employed to transmit cellular signaling information in response to the changing conditions. Excessive ROS accumulation can contribute to cell damage and death. Production of the non-protein amino acid γ-aminobutyrate (GABA) is also stimulated, resulting in partial restoration of respiratory processes and energy production. Accumulated GABA can bind directly to the aluminum-activated malate transporter and the guard cell outward rectifying K+ channel, thereby improving drought and hypoxia tolerance, respectively. Genetic manipulation of GABA metabolism and receptors, respectively, reveal positive relationships between GABA levels and abiotic/biotic stress tolerance, and between malate efflux from the root and heavy metal tolerance. The application of exogenous GABA is associated with lower ROS levels, enhanced membrane stability, changes in the levels of non-enzymatic and enzymatic antioxidants, and crosstalk among phytohormones. Exogenous GABA may be an effective and sustainable tolerance strategy against multiple stresses under field conditions.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran;
| | - Edward J. Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
8
|
Li X, Liao M, Huang J, Xu Z, Lin Z, Ye N, Zhang Z, Peng X. Glycolate oxidase-dependent H 2O 2 production regulates IAA biosynthesis in rice. BMC PLANT BIOLOGY 2021; 21:326. [PMID: 34229625 PMCID: PMC8261990 DOI: 10.1186/s12870-021-03112-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Glycolate oxidase (GLO) is not only a key enzyme in photorespiration but also a major engine for H2O2 production in plants. Catalase (CAT)-dependent H2O2 decomposition has been previously reported to be involved in the regulation of IAA biosynthesis. However, it is still not known which mechanism contributed to the H2O2 production in IAA regulation. RESULTS In this study, we found that in glo mutants of rice, as H2O2 levels decreased IAA contents significantly increased, whereas high CO2 abolished the difference in H2O2 and IAA contents between glo mutants and WT. Further analyses showed that tryptophan (Trp, the precursor for IAA biosynthesis in the Trp-dependent biosynthetic pathway) also accumulated due to increased tryptophan synthetase β (TSB) activity. Moreover, expression of the genes involved in Trp-dependent IAA biosynthesis and IBA to IAA conversion were correspondingly up-regulated, further implicating that both pathways contribute to IAA biosynthesis as mediated by the GLO-dependent production of H2O2. CONCLUSION We investigated the function of GLO in IAA signaling in different levels from transcription, enzyme activities to metabolic levels. The results suggest that GLO-dependent H2O2 signaling, essentially via photorespiration, confers regulation over IAA biosynthesis in rice plants.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Mengmeng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Jiayu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Zheng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Zhanqiao Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Nenghui Ye
- College of Agronomy, Hunan Agricultural University, No.1, Nongda Road, Changsha, 410128, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China.
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| |
Collapse
|
9
|
Burbidge CA, Ford CM, Melino VJ, Wong DCJ, Jia Y, Jenkins CLD, Soole KL, Castellarin SD, Darriet P, Rienth M, Bonghi C, Walker RP, Famiani F, Sweetman C. Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. FRONTIERS IN PLANT SCIENCE 2021; 12:643024. [PMID: 33747023 PMCID: PMC7970118 DOI: 10.3389/fpls.2021.643024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 05/29/2023]
Abstract
Tartaric acid (TA) is an obscure end point to the catabolism of ascorbic acid (Asc). Here, it is proposed as a "specialized primary metabolite", originating from carbohydrate metabolism but with restricted distribution within the plant kingdom and lack of known function in primary metabolic pathways. Grapes fall into the list of high TA-accumulators, with biosynthesis occurring in both leaf and berry. Very little is known of the TA biosynthetic pathway enzymes in any plant species, although recently some progress has been made in this space. New technologies in grapevine research such as the development of global co-expression network analysis tools and genome-wide association studies, should enable more rapid progress. There is also a lack of information regarding roles for this organic acid in plant metabolism. Therefore this review aims to briefly summarize current knowledge about the key intermediates and enzymes of TA biosynthesis in grapes and the regulation of its precursor, ascorbate, followed by speculative discussion around the potential roles of TA based on current knowledge of Asc metabolism, TA biosynthetic enzymes and other aspects of fruit metabolism.
Collapse
Affiliation(s)
| | | | | | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Yong Jia
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | | | - Kathleen Lydia Soole
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Philippe Darriet
- Université Bordeaux, Unité de recherche OEnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Oenology, Nyon, Switzerland
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Crystal Sweetman
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|