1
|
Zeng Y, Xu X, Jiang J, Lin S, Fan Z, Meng Y, Maimaiti A, Wu P, Ren J. Genome-wide association analysis and genomic selection for leaf-related traits of maize. PLoS One 2025; 20:e0323140. [PMID: 40402953 PMCID: PMC12097558 DOI: 10.1371/journal.pone.0323140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/01/2025] [Indexed: 05/24/2025] Open
Abstract
Maize is an important food crop worldwide. The length, width, and area of leaves are crucial traits of plant architecture and further influencing plant density, photosynthesis, and crop yield. To dissect the genetic architecture of leaf length, leaf width, and leaf area, a multi-parents doubled haploid (DH) population was used for genome-wide association study (GWAS) and genomic selection (GS). The length, width, and area of the first leaf above the uppermost ear, the uppermost ear leaf, and the first leaf below the uppermost ear were evaluated in multi-environment trials. Using BLINK and FarmCPU for GWAS, 19 significant single nucleotide polymorphisms (SNPs) on chromosomes 1, 2, 5, 6, 8, 9, and 10 were associated with leaf length, 49 SNPs distributed over all 10 chromosomes were associated with leaf width, and 37 SNPs distributed on all 10 chromosomes except for chromosome 3 were associated with leaf area. The phenotypic variation explained (PVE) by each QTL ranged from 0.05% to 27.46%. Fourteen pleiotropic SNPs were detected by at least two leaf-related traits. A total of 57 candidate genes were identified for leaf-related traits, of which 44 were annotated with known functions. Candidate genes Zm00001d032866, Zm00001D022209, and Zm00001d001980 are involved in leaf senescence. Zm00001d026130, Zm00001d002429, Zm00001d023225, and Zm00001d046767 play important roles in leaf development. GS analysis showed that when 60% of the total genotypes was used as the training population and 3000 SNPs were used for prediction, moderate prediction accuracy was obtained for leaf length, leaf width, and leaf area. The prediction accuracy would be improved by using top significantly associated SNPs for GS. The current study provides a better understanding of the genetic basis of leaf length, leaf width, and leaf area, and valuable information for improving plant architecture by implementing GS.
Collapse
Affiliation(s)
- Yukang Zeng
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xiaoming Xu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jiale Jiang
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Shaohang Lin
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zehui Fan
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yao Meng
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Atikaimu Maimaiti
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Penghao Wu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jiaojiao Ren
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Dong Y, Li G, Zhang X, Feng Z, Li T, Li Z, Xu S, Xu S, Liu W, Xue J. Genome-Wide Association Study for Maize Hybrid Performance in a Typical Breeder Population. Int J Mol Sci 2024; 25:1190. [PMID: 38256265 PMCID: PMC10816832 DOI: 10.3390/ijms25021190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Maize is one of the major crops that has demonstrated success in the utilization of heterosis. Developing high-yield hybrids is a crucial part of plant breeding to secure global food demand. In this study, we conducted a genome-wide association study (GWAS) for 10 agronomic traits using a typical breeder population comprised 442 single-cross hybrids by evaluating additive, dominance, and epistatic effects. A total of 49 significant single nucleotide polymorphisms (SNPs) and 69 significant pairs of epistasis were identified, explaining 26.2% to 64.3% of the phenotypic variation across the 10 traits. The enrichment of favorable genotypes is significantly correlated to the corresponding phenotype. In the confident region of the associated site, 532 protein-coding genes were discovered. Among these genes, the Zm00001d044211 candidate gene was found to negatively regulate starch synthesis and potentially impact yield. This typical breeding population provided a valuable resource for dissecting the genetic architecture of yield-related traits. We proposed a novel mating strategy to increase the GWAS efficiency without utilizing more resources. Finally, we analyzed the enrichment of favorable alleles in the Shaan A and Shaan B groups, as well as in each inbred line. Our breeding practice led to consistent results. Not only does this study demonstrate the feasibility of GWAS in F1 hybrid populations, it also provides a valuable basis for further molecular biology and breeding research.
Collapse
Affiliation(s)
- Yuan Dong
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Guoliang Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| | - Xinghua Zhang
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhiqian Feng
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Ting Li
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Zhoushuai Li
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shizhong Xu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenxin Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing 100193, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Breeding of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
3
|
Wang B, Yang M, Guo H, Wang J, Wang Z, Lu H, Qin G, Chen J. Genome-wide association study for stalk lodging resistance related traits in maize (Zea mays L.). BMC Genomics 2024; 25:19. [PMID: 38166629 PMCID: PMC10759578 DOI: 10.1186/s12864-023-09917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The stalk traits stalk diameter, stalk length, rind penetrometer resistance and dry matter content are important indicators for measuring lodging resistance. RESULTS In this study, 377 inbred lines were used as the basic materials, and four stalk-related traits including stalk diameter, stalk length, rind penetrometer resistance and dry matter content of the third segment of maize, were investigated at the tasseling, grain filling, and maturity stages. 461,053 high-quality SNPs which were obtained by whole genome resequencing were used for genome-wide association study. As a result of mixed linear model analysis (P < 9.77 × 10-6), 29 significant SNPs related to traits were detected, accounting for 7.19% -15.03% of phenotypic variation, among which 4, 1, 4 and 20 SNPs were found related to rind penetrometer resistance, stalk diameter, stalk length, and dry matter content respectively. Most candidate genes are related to plant element structure, signal transduction mechanisms, inorganic ion transport and metabolism, nucleotide transport and metabolism, and transporter enzyme families. Comparing mixed linear model with generalized linear model, a total of 12 candidate genes were detected repeatedly, during which the candidate gene Zm00001d014449 were detected 5 times, with a phenotypic variation interpretation rate of 9.95% -10.84%. This gene is mainly expressed in cells with active cell division and tissue differentiation, and is involved in the formation of stalk vascular bundles and the synthesis of cell walls. Another candidate gene, Zm00001d005300, encodes the transcription factor MYB44, which regulates the dependence of salt stress signal phosphorylation, can effectively inhibit the accumulation of destructive reactive oxygen species, and has a certain resistance to non-biotic stress. In addition, this study also found that 10 unknown functional genes can be further Functional verification. CONCLUSIONS This study helps to deepen the understanding of the genetic basis of traits related to maize stalk lodging resistance, and provides theoretical guidance for future maize lodging resistance breeding.
Collapse
Affiliation(s)
- Bangtai Wang
- Hebi Academy of Agricultural Sciences, Hebi, 458031, Henan, China
- Henan Maize Breeding Engineering Technology Research Center, Hebi, 458031, Henan, China
| | - Meili Yang
- Hebi Academy of Agricultural Sciences, Hebi, 458031, Henan, China
| | - Hua Guo
- Hebi Academy of Agricultural Sciences, Hebi, 458031, Henan, China
- Henan Maize Breeding Engineering Technology Research Center, Hebi, 458031, Henan, China
| | - Jing Wang
- Hebi Academy of Agricultural Sciences, Hebi, 458031, Henan, China
- Henan Maize Breeding Engineering Technology Research Center, Hebi, 458031, Henan, China
| | - Zhihong Wang
- Hebi Academy of Agricultural Sciences, Hebi, 458031, Henan, China
- Henan Maize Breeding Engineering Technology Research Center, Hebi, 458031, Henan, China
| | - Hongwei Lu
- Hebi Academy of Agricultural Sciences, Hebi, 458031, Henan, China
| | - Guiwen Qin
- Hebi Academy of Agricultural Sciences, Hebi, 458031, Henan, China.
| | - Jiafa Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
4
|
Shen Y, Adnan M, Ma F, Kong L, Wang M, Jiang F, Hu Q, Yao W, Zhou Y, Zhang M, Huang J. A high-throughput phenotyping method for sugarcane rind penetrometer resistance and breaking force characterization by near-infrared spectroscopy. PLANT METHODS 2023; 19:101. [PMID: 37770966 PMCID: PMC10540387 DOI: 10.1186/s13007-023-01076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Sugarcane (Saccharum spp.) is the core crop for sugar and bioethanol production over the world. A major problem in sugarcane production is stalk lodging due to weak mechanical strength. Rind penetrometer resistance (RPR) and breaking force are two kinds of regular parameters for mechanical strength characterization. However, due to the lack of efficient methods for determining RPR and breaking force in sugarcane, genetic approaches for improving these traits are generally limited. This study was designed to use near-infrared spectroscopy (NIRS) calibration assay to accurately assess mechanical strength on a high-throughput basis for the first time. RESULTS Based on well-established laboratory measurements of sugarcane stalk internodes collected in the years 2019 and 2020, considerable variations in RPR and breaking force were observed in the stalk internodes. Following a standard NIRS calibration process, two online models were obtained with a high coefficient of determination (R2) and the ratio of prediction to deviation (RPD) values during calibration, internal cross-validation, and external validation. Remarkably, the equation for RPR exhibited R2 and RPD values as high as 0.997 and 17.70, as well as showing relatively low root mean square error values at 0.44 N mm-2 during global modeling, demonstrating excellent predictive performance. CONCLUSIONS This study delivered a successful attempt for rapid and precise prediction of rind penetrometer resistance and breaking force in sugarcane stalk by NIRS assay. These established models can be used to improve phenotyping jobs for sugarcane germplasm on a large scale.
Collapse
Affiliation(s)
- Yinjuan Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
- Guangxi China-ASEAN Youth Industrial Park (Chongzuo Agricultural Hi-Tech Industry Demo Zone), Chongzuo, 532200, Guangxi, China
| | - Muhammad Adnan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fumin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Liyuan Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Maoyao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fuhong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qian Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yongfang Zhou
- Nanning Sugar Industry Co., LTD, Nanning, 530028, Guangxi, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Jiangfeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Academy of Sugarcane and Sugar Industry, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
5
|
Tian Z, Wang X, Dun X, Tian Z, Zhang X, Li J, Ren L, Tu J, Wang H. Integrating biochemical and anatomical characterizations with transcriptome analysis to dissect superior stem strength of ZS11 ( Brassica napus). FRONTIERS IN PLANT SCIENCE 2023; 14:1144892. [PMID: 37229131 PMCID: PMC10203542 DOI: 10.3389/fpls.2023.1144892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Stem lodging resistance is a serious problem impairing crop yield and quality. ZS11 is an adaptable and stable yielding rapeseed variety with excellent resistance to lodging. However, the mechanism regulating lodging resistance in ZS11 remains unclear. Here, we observed that high stem mechanical strength is the main factor determining the superior lodging resistance of ZS11 through a comparative biology study. Compared with 4D122, ZS11 has higher rind penetrometer resistance (RPR) and stem breaking strength (SBS) at flowering and silique stages. Anatomical analysis shows that ZS11 exhibits thicker xylem layers and denser interfascicular fibrocytes. Analysis of cell wall components suggests that ZS11 possessed more lignin and cellulose during stem secondary development. By comparative transcriptome analysis, we reveal a relatively higher expression of genes required for S-adenosylmethionine (SAM) synthesis, and several key genes (4-COUMATATE-CoA LIGASE, CINNAMOYL-CoA REDUCTASE, CAFFEATE O-METHYLTRANSFERASE, PEROXIDASE) involved in lignin synthesis pathway in ZS11, which support an enhanced lignin biosynthesis ability in the ZS11 stem. Moreover, the difference in cellulose may relate to the significant enrichment of DEGs associated with microtubule-related process and cytoskeleton organization at the flowering stage. Protein interaction network analysis indicate that the preferential expression of several genes, such as LONESOME HIGHWAY (LHW), DNA BINDING WITH ONE FINGERS (DOFs), WUSCHEL HOMEOBOX RELATED 4 (WOX4), are related to vascular development and contribute to denser and thicker lignified cell layers in ZS11. Taken together, our results provide insights into the physiological and molecular regulatory basis for the formation of stem lodging resistance in ZS11, which will greatly promote the application of this superior trait in rapeseed breeding.
Collapse
Affiliation(s)
- Zhengshu Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Industrial Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Xiaoxue Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Jinfeng Li
- Industrial Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lijun Ren
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
| | - Jinxing Tu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
6
|
Dang D, Guan Y, Zheng H, Zhang X, Zhang A, Wang H, Ruan Y, Qin L. Genome-Wide Association Study and Genomic Prediction on Plant Architecture Traits in Sweet Corn and Waxy Corn. PLANTS (BASEL, SWITZERLAND) 2023; 12:303. [PMID: 36679015 PMCID: PMC9867343 DOI: 10.3390/plants12020303] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Sweet corn and waxy corn has a better taste and higher accumulated nutritional value than regular maize, and is widely planted and popularly consumed throughout the world. Plant height (PH), ear height (EH), and tassel branch number (TBN) are key plant architecture traits, which play an important role in improving grain yield in maize. In this study, a genome-wide association study (GWAS) and genomic prediction analysis were conducted on plant architecture traits of PH, EH, and TBN in a fresh edible maize population consisting of 190 sweet corn inbred lines and 287 waxy corn inbred lines. Phenotypic data from two locations showed high heritability for all three traits, with significant differences observed between sweet corn and waxy corn for both PH and EH. The differences between the three subgroups of sweet corn were not obvious for all three traits. Population structure and PCA analysis results divided the whole population into three subgroups, i.e., sweet corn, waxy corn, and the subgroup mixed with sweet and waxy corn. Analysis of GWAS was conducted with 278,592 SNPs obtained from resequencing data; 184, 45, and 68 significantly associated SNPs were detected for PH, EH, and TBN, respectively. The phenotypic variance explained (PVE) values of these significant SNPs ranged from 3.50% to 7.0%. The results of this study lay the foundation for further understanding the genetic basis of plant architecture traits in sweet corn and waxy corn. Genomic selection (GS) is a new approach for improving quantitative traits in large plant breeding populations that uses whole-genome molecular markers. The marker number and marker quality are essential for the application of GS in maize breeding. GWAS can choose the most related markers with the traits, so it can be used to improve the predictive accuracy of GS.
Collapse
Affiliation(s)
- Dongdong Dang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | - Yuan Guan
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | - Ao Zhang
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Wang
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yanye Ruan
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Li Qin
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
7
|
Wang S, Li H, Dong Z, Wang C, Wei X, Long Y, Wan X. Genetic structure and molecular mechanism underlying the stalk lodging traits in maize ( Zea mays L.). Comput Struct Biotechnol J 2022; 21:485-494. [PMID: 36618981 PMCID: PMC9803694 DOI: 10.1016/j.csbj.2022.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/03/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Stalk lodging seriously affects yield and quality of crops, and it can be caused by several factors, such as environments, developmental stages, and internal chemical components of plant stalks. Breeding of stalk lodging-resistant varieties is thus an important task for maize breeders. To better understand the genetic basis underlying stalk lodging resistance, several methods such as quantitative trait locus (QTL) mapping and genome-wide association study (GWAS) have been used to mine potential gene resources. Based on different types of genetic populations and mapping methods, many significant loci associated with stalk lodging resistance have been identified so far. However, few work has been performed to compare and integrate these reported genetic loci. In this study, we first collected hundreds of QTLs and quantitative trait nucleotides (QTNs) related to stalk lodging traits in maize. Then we mapped and integrated the QTLs and QTNs in maize genome to identify overlapped hotspot regions. Based on the genomic confidence intervals harboring these overlapped hotspot regions, we predicted candidate genes related to stalk lodging traits. Meanwhile, we mapped reported genes to these hotspot regions. Finally, we constructed molecular regulatory networks underlying stalk lodging resistance in maize. Collectively, this study provides not only useful genetic loci for deeply exploring molecular mechanisms of stalk lodging resistance traits, but also potential candidate genes and targeted strategies for improving stalk lodging resistance to increase crop yields in future.
Collapse
Affiliation(s)
- Shuai Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huangai Li
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Cheng Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
8
|
Wu L, Zheng Y, Jiao F, Wang M, Zhang J, Zhang Z, Huang Y, Jia X, Zhu L, Zhao Y, Guo J, Chen J. Identification of quantitative trait loci for related traits of stalk lodging resistance using genome-wide association studies in maize (Zea mays L.). BMC Genom Data 2022; 23:76. [PMID: 36319954 PMCID: PMC9623923 DOI: 10.1186/s12863-022-01091-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Stalk lodging is one of the main factors affecting maize (Zea mays L.) yield and limiting mechanized harvesting. Developing maize varieties with high stalk lodging resistance requires exploring the genetic basis of lodging resistance-associated agronomic traits. Stalk strength is an important indicator to evaluate maize lodging and can be evaluated by measuring stalk rind penetrometer resistance (RPR) and stalk buckling strength (SBS). Along with morphological traits of the stalk for the third internodes length (TIL), fourth internode length (FIL), third internode diameter (TID), and the fourth internode diameter (FID) traits are associated with stalk lodging resistance. RESULTS In this study, a natural population containing 248 diverse maize inbred lines genotyped with 83,057 single nucleotide polymorphism (SNP) markers was used for genome-wide association study (GWAS) for six stalk lodging resistance-related traits. The heritability of all traits ranged from 0.59 to 0.72 in the association mapping panel. A total of 85 significant SNPs were identified for the association mapping panel using best linear unbiased prediction (BLUP) values of all traits. Additionally, five candidate genes were associated with stalk strength traits, which were either directly or indirectly associated with cell wall components. CONCLUSIONS These findings contribute to our understanding of the genetic basis of maize stalk lodging and provide valuable theoretical guidance for lodging resistance in maize breeding in the future.
Collapse
Affiliation(s)
- Lifen Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Yunxiao Zheng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Fuchao Jiao
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao 266109 China
| | - Ming Wang
- grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao 266109 China
| | - Jing Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Zhongqin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Yaqun Huang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Xiaoyan Jia
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Liying Zhu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Yongfeng Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Jinjie Guo
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China
| | - Jingtang Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Hebei, Baoding 071001 China ,grid.412608.90000 0000 9526 6338College of Agronomy, Qingdao Agricultural University, Shandong, Qingdao 266109 China
| |
Collapse
|
9
|
Liu L, Liu S, Lu H, Tian Z, Zhao H, Wei D, Wang S, Huang Z. Integration of transcriptome and metabolome analyses reveals key lodging-resistance-related genes and metabolic pathways in maize. Front Genet 2022; 13:1001195. [PMID: 36299597 PMCID: PMC9588961 DOI: 10.3389/fgene.2022.1001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Stalk lodging, or breakage of the stalk at or below the ear, is one of the vital factors causing substantial yield losses in maize (Zea mays. L). Lodging affects maize plants’ physiological and molecular processes, eventually impacting plant growth and productivity. Despite this known fact, few researchers have investigated the genetic architecture underlying lodging in maize. Herein, through integrated transcriptome, metabolome, and phenotypic analyses of stalks of three diverse hybrid cultivars (highly resistant JNK738, mildly resistant JNK728, and lowly resistant XY335) at the tasseling (10 days to silking, 10 DTS) stage, we identified key genes and metabolic pathways modulating lodging resistance in maize. Based on the RNA-Seq analysis, a total of 10093 differentially expressed genes (DEGs) were identified from the comparison of the three varieties in pairs. Additionally, key lodging resistance–related metabolic pathways were obtained by KEGG enrichment analysis, and the DEGs were found predominantly enriched in phenylpropanoid and secondary metabolites biosynthesis pathways in the L_vs._H and M_vs._H comparison groups. Moreover, K-means analysis clustered the DEGs into clear and distinct expression profiles for each cultivar, with several functional and regulatory genes involved in the cell wall assembly, lignin biosynthetic process and hormone metabolic process being identified in the special clusters related to lodging resistance. Subsequently, integrating metabolome and transcriptome analyses revealed nine key lignin-associated metabolites that showed different expression trends in the three hybrid cultivars, among which L-phenylalanine and p-coumaric acid were regarded as differentially changed metabolites (DCMs). These two DCMs belonged to phenylalanine metabolism and biosynthesis pathways and were also supported by the RNA-Seq data. Furthermore, plant hormone signal transduction pathway–related genes encoding auxin, abscisic acid, jasmonates, and salicylic acid were differentially expressed in the three comparisons of lodging resistance, indicating these DEGs were valuable potential targets for improving maize lodging resistance. Finally, comparative physiological and qRT-PCR analyses results supported our transcriptome-based findings. Our research not only provides a preliminary theoretical basis and experimental ideas for an in-depth study of the regulatory networks involved in maize lodging resistance regulation but also opens up new avenues for molecular maize stalk lodging resistance breeding.
Collapse
Affiliation(s)
- Lei Liu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Songtao Liu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Haibo Lu
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Haichao Zhao
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Dong Wei
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
- *Correspondence: Zhihong Huang,
| |
Collapse
|
10
|
Hou X, Cheng S, Wang S, Yu T, Wang Y, Xu P, Xu X, Zhou Q, Hou X, Zhang G, Chen C. Characterization and Fine Mapping of qRPR1-3 and qRPR3-1, Two Major QTLs for Rind Penetrometer Resistance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:944539. [PMID: 35928711 PMCID: PMC9344970 DOI: 10.3389/fpls.2022.944539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/21/2022] [Indexed: 05/31/2023]
Abstract
Stalk strength is one of the most important traits in maize, which affects stalk lodging resistance and, consequently, maize harvestable yield. Rind penetrometer resistance (RPR) as an effective and reliable measurement for evaluating maize stalk strength is positively correlated with stalk lodging resistance. In this study, one F2 and three F2:3 populations derived from the cross of inbred lines 3705I (the low RPR line) and LH277 (the high RPR line) were constructed for mapping quantitative trait loci (QTL), conferring RPR in maize. Fourteen RPR QTLs were identified in four environments and explained the phenotypic variation of RPR from 4.14 to 15.89%. By using a sequential fine-mapping strategy based on the progeny test, two major QTLs, qRPR1-3 and qRPR3-1, were narrowed down to 4-Mb and 550-kb genomic interval, respectively. The quantitative real-time PCR (qRT-PCR) assay was adopted to identify 12 candidate genes responsible for QTL qRPR3-1. These findings should facilitate the identification of the polymorphism loci underlying QTL qRPR3-1 and molecular breeding for RPR in maize.
Collapse
|
11
|
Ma Y, Li D, Xu Z, Gu R, Wang P, Fu J, Wang J, Du W, Zhang H. Dissection of the Genetic Basis of Yield Traits in Line per se and Testcross Populations and Identification of Candidate Genes for Hybrid Performance in Maize. Int J Mol Sci 2022; 23:5074. [PMID: 35563470 PMCID: PMC9102962 DOI: 10.3390/ijms23095074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/31/2022] Open
Abstract
Dissecting the genetic basis of yield traits in hybrid populations and identifying the candidate genes are important for molecular crop breeding. In this study, a BC1F3:4 population, the line per se (LPS) population, was constructed by using elite inbred lines Zheng58 and PH4CV as the parental lines. The population was genotyped with 55,000 SNPs and testcrossed to Chang7-2 and PH6WC (two testers) to construct two testcross (TC) populations. The three populations were evaluated for hundred kernel weight (HKW) and yield per plant (YPP) in multiple environments. Marker-trait association analysis (MTA) identified 24 to 151 significant SNPs in the three populations. Comparison of the significant SNPs identified common and specific quantitative trait locus/loci (QTL) in the LPS and TC populations. Genetic feature analysis of these significant SNPs proved that these SNPs were associated with the tested traits and could be used to predict trait performance of both LPS and TC populations. RNA-seq analysis was performed using maize hybrid varieties and their parental lines, and differentially expressed genes (DEGs) between hybrid varieties and parental lines were identified. Comparison of the chromosome positions of DEGs with those of significant SNPs detected in the TC population identified potential candidate genes that might be related to hybrid performance. Combining RNA-seq analysis and MTA results identified candidate genes for hybrid performance, providing information that could be useful for maize hybrid breeding.
Collapse
Affiliation(s)
- Yuting Ma
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China;
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Dongdong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Zhenxiang Xu
- Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Z.X.); (R.G.); (J.W.)
| | - Riliang Gu
- Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Z.X.); (R.G.); (J.W.)
| | - Pingxi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Junjie Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Jianhua Wang
- Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Z.X.); (R.G.); (J.W.)
| | - Wanli Du
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Hongwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| |
Collapse
|
12
|
Liu J, Sun C, Guo S, Yin X, Yuan Y, Fan B, Lv Q, Cai X, Zhong Y, Xia Y, Dong X, Guo Z, Song G, Huang W. Genomic and Transcriptomic Analyses Reveal Pathways and Genes Associated With Brittle Stalk Phenotype in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:849421. [PMID: 35548303 PMCID: PMC9083323 DOI: 10.3389/fpls.2022.849421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The mechanical strength of the stalk affects the lodging resistance and digestibility of the stalk in maize. The molecular mechanisms regulating the brittleness of stalks in maize remain undefined. In this study, we constructed the maize brittle stalk mutant (bk5) by crossing the W22:Mu line with the Zheng 58 line. The brittle phenotype of the mutant bk5 existed in all of the plant organs after the five-leaf stage. Compared to wild-type (WT) plants, the sclerenchyma cells of bk5 stalks had a looser cell arrangement and thinner cell wall. Determination of cell wall composition showed that obvious differences in cellulose content, lignin content, starch content, and total soluble sugar were found between bk5 and WT stalks. Furthermore, we identified 226 differentially expressed genes (DEGs), with 164 genes significantly upregulated and 62 genes significantly downregulated in RNA-seq analysis. Some pathways related to cellulose and lignin synthesis, such as endocytosis and glycosylphosphatidylinositol (GPI)-anchored biosynthesis, were identified by the Kyoto Encyclopedia of Gene and Genomes (KEGG) and gene ontology (GO) analysis. In bulked-segregant sequence analysis (BSA-seq), we detected 2,931,692 high-quality Single Nucleotide Polymorphisms (SNPs) and identified five overlapped regions (11.2 Mb) containing 17 candidate genes with missense mutations or premature termination codons using the SNP-index methods. Some genes were involved in the cellulose synthesis-related genes such as ENTH/ANTH/VHS superfamily protein gene (endocytosis-related gene) and the lignin synthesis-related genes such as the cytochrome p450 gene. Some of these candidate genes identified from BSA-seq also existed with differential expression in RNA-seq analysis. These findings increase our understanding of the molecular mechanisms regulating the brittle stalk phenotype in maize.
Collapse
Affiliation(s)
- Jun Liu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Chuanbo Sun
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Siqi Guo
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiaohong Yin
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yuling Yuan
- Hulun Buir Agricultural Reclamation Technology Development Co., Ltd., Hailar, China
| | - Bing Fan
- Hulun Buir Agricultural Reclamation Technology Development Co., Ltd., Hailar, China
| | - Qingxue Lv
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xinru Cai
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yi Zhong
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yuanfeng Xia
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Xiaomei Dong
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhifu Guo
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guangshu Song
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Wei Huang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| |
Collapse
|
13
|
Landoni M, Cassani E, Ghidoli M, Colombo F, Sangiorgio S, Papa G, Adani F, Pilu R. Brachytic2 mutation is able to counteract the main pleiotropic effects of brown midrib3 mutant in maize. Sci Rep 2022; 12:2446. [PMID: 35165340 PMCID: PMC8844417 DOI: 10.1038/s41598-022-06428-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
Maize is the basis of nutrition of domesticated herbivores and one of the most promising energy crops. The presence of lignin in the cell wall, tightly associated to carbohydrates, prevents the physical access of enzymes such as cellulase, limiting the carbohydrate degradability and consequently the energy value. To increase the utilization of the biomass cellulose content, the challenge of breeding programs is to lower or modify the lignin components. In maize several mutations are able to modify the lignin content and in particular the mutation in brown midrib3 (bm3) gene appeared as one of the most promising in breeding programs. Unfortunately this mutation has several negative pleiotropic effects on various important agronomic traits such as stay green, lodging and susceptibility to several infections.The maize Brachyitic 2 (br2) gene encodes for a putative protein involved in polar movement of auxins. br2 mutant plants are characterized by shortening of lower stalk internodes, unusual stalk strength and tolerance to wind lodging, darker leaves persisting longer in the active green state in comparison to wild type plants, suggesting a possible utilization of br2 plants to counteract the negative effects of the bm3 mutation. In this work, we report the generation and a preliminary characterization of the double mutant bm3 br2, suggesting the potential use of this new genetic material to increase biomass cellulose utilization.
Collapse
Affiliation(s)
- Michela Landoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Elena Cassani
- DiSAA, Genetic Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Martina Ghidoli
- DiSAA, Genetic Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Federico Colombo
- DiSAA, Genetic Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Stefano Sangiorgio
- DiSAA, Genetic Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Gabriella Papa
- DiSAA, Gruppo Ricicla, Biomass and Bioenergy Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Fabrizio Adani
- DiSAA, Gruppo Ricicla, Biomass and Bioenergy Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Roberto Pilu
- DiSAA, Genetic Laboratory, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy. .,Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| |
Collapse
|
14
|
Guo J, He K, Meng Y, Hellmich RL, Chen S, Lopez MD, Lauter N, Wang Z. Asian corn borer damage is affected by rind penetration strength of corn stalks in a spatiotemporally dependent manner. PLANT DIRECT 2022; 6:e381. [PMID: 35141460 PMCID: PMC8814773 DOI: 10.1002/pld3.381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Asian corn borer, Ostrinia furnacalis (Guenée), is an important insect pest of maize throughout most of Asia. The rind of a maize stalk is a key barrier against corn borer larvae boring into the plant. There is a need to better understand the relationship between stalk strength and O. furnacalis larval injury, particularly for elite maize genotypes. To determine whether stalk strength is involved in maize resistance to O. furnacalis larval injury, 39 maize lines were evaluated in 2012 and 2013. Rind penetration strength (RPS) was measured at tassel (VT) and milk (R3) stages as a possible stalk resistance trait for O. furnacalis. RPS of primary ear internode at VT and R3 accounted for 37 and 38% of the variance in O. furnacalis injury (measured as number of holes) for simulated (artificially infested) first and second generation O. furnacalis, respectively. Relationships between stalk RPS values and tunnel length were weak. Results suggest that harder stalks have enhanced resistance to stalk boring but not to pith feeding or tunneling of O. furnacalis larvae. The RPS measures could provide classical maize breeders an important tool for evaluating stalk strength and corn borer resistance in maize. The assessments should focus on the internodes primary ear or above/below primary ear during both VT stage for first generation and R3 stage for second generation O. furnacalis resistance.
Collapse
Affiliation(s)
- Jingfei Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA – CABI Joint Laboratory for Bio‐safety, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA – CABI Joint Laboratory for Bio‐safety, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yujie Meng
- College of Agriculture and BiotechnologyChina Agricultural UniversityBeijingChina
| | | | - Shaojiang Chen
- College of Agriculture and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Miriam D. Lopez
- Corn Insects and Crop Genetics Research UnitUSDA−ARSAmesIowaUSA
| | - Nick Lauter
- Corn Insects and Crop Genetics Research UnitUSDA−ARSAmesIowaUSA
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, MOA – CABI Joint Laboratory for Bio‐safety, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
15
|
Shao Y, Shen Y, He F, Li Z. QTL Identification for Stem Fiber, Strength and Rot Resistance in a DH Population from an Alien Introgression of Brassica napus. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030373. [PMID: 35161354 PMCID: PMC8840419 DOI: 10.3390/plants11030373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 05/31/2023]
Abstract
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force (BF), breaking strength (F) and Sclerotinia sclerotiorum resistance (SSR). Each trait was significantly positively or negatively correlated with more than three of the other six traits. QTL mapping for ADL, Cel, Hem, SG, BF, F and SSR were performed using a doubled haploid population derived from an intertribal B. napus introgression line 'Y689' crossed with B. napus cv. 'Westar'. A total of 67 additive QTL were identified and integrated into 55 consensus QTL by meta-analysis. Among the 55 consensus QTL, 23 (41.8%) QTL were co-located and were integrated into 11 unique QTL. The QTL by environment (Q × E) interactions were analyzed and 22 combined QTL were identified. In addition, candidate genes within the QTL intervals were proposed based on the known function of Arabidopsis orthologs. These results provided valuable information for improving lodging resistance, S. sclerotiorum resistance and mechanized harvesting of B. napus.
Collapse
Affiliation(s)
- Yujiao Shao
- College of Chemistry and Life Science, Hubei University of Education, Wuhan 430070, China;
| | - Yusen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feifei He
- Department of Natural Sciences, Shantou Polytechnic, Shantou 515078, China;
| | - Zaiyun Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
16
|
Brault C, Doligez A, Cunff L, Coupel-Ledru A, Simonneau T, Chiquet J, This P, Flutre T. Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine. G3-GENES GENOMES GENETICS 2021; 11:6325507. [PMID: 34544146 PMCID: PMC8496232 DOI: 10.1093/g3journal/jkab248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022]
Abstract
Viticulture has to cope with climate change and to decrease pesticide inputs, while maintaining yield and wine quality. Breeding is a key lever to meet this challenge, and genomic prediction a promising tool to accelerate breeding programs. Multivariate methods are potentially more accurate than univariate ones. Moreover, some prediction methods also provide marker selection, thus allowing quantitative trait loci (QTLs) detection and the identification of positional candidate genes. To study both genomic prediction and QTL detection for drought-related traits in grapevine, we applied several methods, interval mapping (IM) as well as univariate and multivariate penalized regression, in a bi-parental progeny. With a dense genetic map, we simulated two traits under four QTL configurations. The penalized regression method Elastic Net (EN) for genomic prediction, and controlling the marginal False Discovery Rate on EN selected markers to prioritize the QTLs. Indeed, penalized methods were more powerful than IM for QTL detection across various genetic architectures. Multivariate prediction did not perform better than its univariate counterpart, despite strong genetic correlation between traits. Using 14 traits measured in semi-controlled conditions under different watering conditions, penalized regression methods proved very efficient for intra-population prediction whatever the genetic architecture of the trait, with predictive abilities reaching 0.68. Compared to a previous study on the same traits, these methods applied on a denser map found new QTLs controlling traits linked to drought tolerance and provided relevant candidate genes. Overall, these findings provide a strong evidence base for implementing genomic prediction in grapevine breeding.
Collapse
Affiliation(s)
- Charlotte Brault
- Institut Français de la Vigne et du Vin, Montpellier F-34398, France.,UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier F-34398, France.,UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier F-34398, France
| | - Agnès Doligez
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier F-34398, France.,UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier F-34398, France
| | - Le Cunff
- Institut Français de la Vigne et du Vin, Montpellier F-34398, France.,UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier F-34398, France.,UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier F-34398, France
| | - Aude Coupel-Ledru
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier 34000, France
| | - Thierry Simonneau
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier 34000, France
| | | | - Patrice This
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier F-34398, France.,UMT Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier F-34398, France
| | - Timothée Flutre
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette 91190, France
| |
Collapse
|
17
|
Genome-wide association mapping reveals key genomic regions for physiological and yield-related traits under salinity stress in wheat (Triticum aestivum L.). Genomics 2021; 113:3198-3215. [PMID: 34293475 DOI: 10.1016/j.ygeno.2021.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
A genome-wide association study (GWAS) was conducted using six different multi-locus GWAS models and 35K SNP array to demarcate genomic regions underlying reproductive stage salinity tolerance. Marker-trait association analysis was performed for salt tolerance indices (STI) of 11 morpho-physiological traits, and the actual concentrations of Na+ and K+, and the Na+/K+ ratio in flag leaf. A total of 293 significantly associated quantitative trait nucleotides (QTNs) for 14 morpho-physiological traits were identified. Of these 293 QTNs, 12 major QTNs with R2 ≥ 10.0% were detected in three or more GWAS models. Novel major QTNs were identified for plant height, number of effective tillers, biomass, grain yield, thousand grain weight, Na+ and K+ content, and the Na+/K+ ratio in flag leaf. Moreover, 48 candidate genes were identified from the associated genomic regions. The QTNs identified in this study could potentially be targeted for improving salinity tolerance in wheat.
Collapse
|
18
|
Shikha K, Shahi JP, Vinayan MT, Zaidi PH, Singh AK, Sinha B. Genome-wide association mapping in maize: status and prospects. 3 Biotech 2021; 11:244. [PMID: 33968587 PMCID: PMC8085158 DOI: 10.1007/s13205-021-02799-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association study (GWAS) provides a robust and potent tool to retrieve complex phenotypic traits back to their underlying genetics. Maize is an excellent crop for performing GWAS due to diverse genetic variability, rapid decay of linkage disequilibrium, availability of distinct sub-populations and abundant SNP information. The application of GWAS in maize has resulted in successful identification of thousands of genomic regions associated with many abiotic and biotic stresses. Many agronomic and quality traits of maize are severely affected by such stresses and, significantly affecting its growth and productivity. To improve productivity of maize crop in countries like India which contribute only 2% to the world's total production in 2019-2020, it is essential to understand genetic complexity of underlying traits. Various DNA markers and trait associations have been revealed using conventional linkage mapping methods. However, it has achieved limited success in improving polygenic complex traits due to lower resolution of trait mapping. The present review explores the prospects of GWAS in improving yield, quality and stress tolerance in maize besides, strengths and challenges of using GWAS for molecular breeding and genomic selection. The information gathered will facilitate elucidation of genetic mechanisms of complex traits and improve efficiency of marker-assisted selection in maize breeding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02799-4.
Collapse
Affiliation(s)
- Kumari Shikha
- Department of Genetics and Plant Breeding, Institute of Agriculltural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - J. P. Shahi
- Department of Genetics and Plant Breeding, Institute of Agriculltural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - M. T. Vinayan
- International Maize and Wheat Improvement Centre (CIMMYT)-Asia, ICRISAT Campus, Patancheru, Hyderabad, Telangana India
| | - P. H. Zaidi
- International Maize and Wheat Improvement Centre (CIMMYT)-Asia, ICRISAT Campus, Patancheru, Hyderabad, Telangana India
| | - A. K. Singh
- Department of Genetics and Plant Breeding, Institute of Agriculltural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - B. Sinha
- Department of Genetics and Plant Breeding, Institute of Agriculltural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh India
| |
Collapse
|