1
|
Joshi P, Sharma V, Pandey AK, Nayak SN, Bajaj P, Sudini HK, Sharma S, Varshney RK, Pandey MK. Identification of miRNAs associated with Aspergillus flavus infection and their targets in groundnut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2025; 25:345. [PMID: 40098099 PMCID: PMC11917013 DOI: 10.1186/s12870-025-06322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND The quality of groundnut produce is adversely impacted due to aflatoxin contamination by the fungus Aspergillus flavus. Although the transcriptomic control is not fully understood, the interaction between long non-coding RNAs and microRNAs in regulating A. flavus and aflatoxin contamination remains unclear. This study was carried out to identify microRNAs (miRNAs) to enhance the understanding of in vitro seed colonization (IVSC) resistance mechanism in groundnut. RESULT In this study, resistant (J 11) and susceptible (JL 24) varieties of groundnut were treated with toxigenic A. flavus (strain AF-11-4), and total RNA was extracted at 1 day after inoculation (1 DAI), 2 DAI, 3 DAI and 7 DAI. Seeds of JL 24 showed higher mycelial growth than J 11 at successive days after inoculation. A total of 208 known miRNAs belonging to 36 miRNA families, with length varying from 20-24 nucleotides, were identified, along with 27 novel miRNAs, with length varying from 20-22 nucleotides. Using psRNATarget server, 952 targets were identified for all the miRNAs. The targeted genes function as disease resistant proteins encoding, auxin responsive proteins, squamosa promoter binding like proteins, transcription factors, pentatricopeptide repeat-containing proteins and growth regulating factors. Through differential expression analysis, seven miRNAs (aly-miR156d-3p, csi-miR1515a, gma-miR396e, mtr-miR2118, novo-miR-n27, ptc-miR482d-3p and ppe-miR396a) were found common among 1 DAI, 2 DAI, 3 DAI and 7 DAI in J 11, whereas ten miRNAs (csi-miR159a-5p, csi-miR164a-3p, novo-miR-n17, novo-miR-n2, osa-miR162b, mtr-miR2118, ptc-miR482d-3p, ptc-miR167f-3p, stu-miR319-3p and zma-miR396b-3p) were found common among 1 DAI, 2 DAI, 3 DAI and 7 DAI in JL 24. Two miRNAs, ptc-miR482d-3p and mtr-miR2118, showed contrasting expression at different time intervals between J 11 and JL 24. These two miRNAs were found to target those genes with NBS-LRR function, making them potential candidates for marker development in groundnut breeding programs aimed at enhancing resistance against A. flavus infection. CONCLUSION This study enhances our understanding of the involvement of two miRNAs namely, ptc-miR482d-3p and mtr-miR2118, along with their NBS-LRR targets, in conferring resistance against A. flavus-induced aflatoxin contamination in groundnut under in vitro conditions.
Collapse
Affiliation(s)
- Pushpesh Joshi
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Vinay Sharma
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Arun K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Spurthi N Nayak
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Hari K Sudini
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology (CEGSB), and Center for Pre-Breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
2
|
Liang M, Ji T, Li S, Wang X, Cui L, Gao L, Wan H, Ma S, Tian Y. Silencing CsMAP65-2 and CsMAP65-3 in cucumber reduces susceptibility to Meloidogyne incognita. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109356. [PMID: 39637709 DOI: 10.1016/j.plaphy.2024.109356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Root knot nematodes (RKNs) induce hypertrophy and cell proliferation within the vascular cylinders of host plants, leading to the formation of giant cells (GCs) that are enlarged, multinucleate cells with high metabolic activity. These GCs are formed through repeated karyokinesis without cytokinesis and are accompanied by significant changes in cytoskeleton organization. In this study, two microtubule-binding protein genes, CsMAP65-2 and CsMAP65-3, are upregulated in cucumber roots upon RKNs infection, specifically at 3, 96, and 120 hpi. GUS expression analysis further confirmed the induction of CsMAP65-2 and CsMAP65-3 in both roots and nematode-induced galls. Silencing CsMAP65-2 or CsMAP65-3 using VIGS technology led to a reduction in gall size and number, as well as a decrease in GCs number (24.98% for CsMAP65-2; 19.48% for CsMAP65-3) and area (6% for CsMAP65-2; 4% for CsMAP65-3), compared to control plants. Furthermore, qRT-PCR analysis revealed upregulation of CsMYC2、CsPR1、CsPAD4, and CsPDF1 in CsMAP65-2 silenced lines and upregulation of CsFRK1 in CsMAP65-3 silenced lines, while CsJAZ1 was downregulated in both silenced lines. These findings suggest that CsMAP65-2 and CsMAP65-3 are critical for GCs development during RKN infection and provide a foundation for breeding nematode-resistant cucumber varieties. This research also offers insights for developing sustainable nematode management strategies in gourd crop cultivation.
Collapse
Affiliation(s)
- Meiting Liang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tingting Ji
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingyi Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lujing Cui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongjian Wan
- Institute of Vegetables and State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Chano V, Ferrari RC, Domínguez-Flores T, Shrestha K, Fussi B, Seidel H, Gailing O, Budde KB. Transcriptional time-course analysis during ash dieback infection revealed different responses in tolerant and susceptible Fraxinus excelsior genotypes. BMC PLANT BIOLOGY 2025; 25:107. [PMID: 39856539 PMCID: PMC11762065 DOI: 10.1186/s12870-025-06074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Hymenoscyphus fraxineus, the causal agent of Ash Dieback (ADB), has been introduced to eastern Europe in the 1990s from where it spread causing decline in European ash populations. However, the genetic basis of the molecular response in tolerant and susceptible ash trees to this disease is still largely unknown. We performed RNA-sequencing to study the transcriptomic response to the disease in four ash genotypes (ADB-tolerant FAR3 and FS36, and ADB-susceptible UW1 and UW2), during a time-course of 7, 14, 21, and 28 days post-inoculation, including mock-inoculated trees as control samples for each sampling time point. The analysis yielded 395 and 500 Differentially Expressed Genes (DEGs) along the response for ADB-tolerant FAR3 and FS36, respectively, while ADB-susceptible UW1 and UW2 revealed 194 and 571 DEGs, respectively, with most DEGs found exclusively in just one of the genotypes. DEGs shared between tolerant genotypes FAR3 and FS36, included genes involved in the production of phytoalexins and other secondary metabolites with roles in plant defense. Moreover, we identified an earlier expression of genes involved in both pattern- and effector-triggered immunity (PTI and ETI) in ADB-tolerant genotypes, while in ADB-susceptible genotypes both responses were delayed (late response). Overall, these results revealed different transcriptomic expression patterns not only between ADB-tolerant and ADB-susceptible genotypes, but also within these two groups. This hints to individual responses in the natural tolerance to ADB, possibly revealing diversified strategies across ash genotypes.
Collapse
Affiliation(s)
- Víctor Chano
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, Albrecht-Thaer-Weg 3, Göttingen, 37075, Germany.
| | - Renata Callegari Ferrari
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
- University of Göttingen, Carl-Sprengel-Weg 1, Göttingen, 37075, Germany
| | - Tania Domínguez-Flores
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
| | - Karuna Shrestha
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany
- Forestry Development Department, Oak ParkCarlow, R93 XE12, Ireland
| | - Barbara Fussi
- Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, Teisendorf, 83317, Germany
| | - Hannes Seidel
- Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, Teisendorf, 83317, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, Göttingen, 37077, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, Albrecht-Thaer-Weg 3, Göttingen, 37075, Germany.
| | - Katharina B Budde
- Northwest German Forest Research Institute, Professor-Oelkers-Straße 6, Hann. Münden, 34346, Germany
| |
Collapse
|
4
|
Liu XM, Yuan ZG, Rao S, Zhang WW, Ye JB, Cheng SY, Xu F. Identification, characterization, and expression analysis of WRKY transcription factors in Cardamine violifolia reveal the key genes involved in regulating selenium accumulation. BMC PLANT BIOLOGY 2024; 24:860. [PMID: 39266968 PMCID: PMC11396617 DOI: 10.1186/s12870-024-05562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cardamine violifolia is a significant Brassicaceae plant known for its high selenium (Se) accumulation capacity, serving as an essential source of Se for both humans and animals. WRKY transcription factors play crucial roles in plant responses to various biotic and abiotic stresses, including cadmium stress, iron deficiency, and Se tolerance. However, the molecular mechanism of CvWRKY in Se accumulation is not completely clear. RESULTS In this study, 120 WRKYs with conserved domains were identified from C. violifolia and classified into three groups based on phylogenetic relationships, with Group II further subdivided into five subgroups. Gene structure analysis revealed WRKY variations and mutations within the CvWRKYs. Segmental duplication events were identified as the primary driving force behind the expansion of the CvWRKY family, with numerous stress-responsive cis-acting elements found in the promoters of CvWRKYs. Transcriptome analysis of plants treated with exogenous Se and determination of Se levels revealed a strong positive correlation between the expression levels of CvWRKY034 and the Se content. Moreover, CvWRKY021 and CvWRKY099 exhibited high homology with AtWRKY47, a gene involved in regulating Se accumulation in Arabidopsis thaliana. The WRKY domains of CvWRKY021 and AtWRKY47 were highly conserved, and transcriptome data analysis revealed that CvWRKY021 responded to Na2SeO4 induction, showing a positive correlation with the concentration of Na2SeO4 treatment. Under the induction of Na2SeO3, CvWRKY021 and CvWRKY034 were significantly upregulated in the roots but downregulated in the shoots, and the Se content in the roots increased significantly and was mainly concentrated in the roots. CvWRKY021 and CvWRKY034 may be involved in the accumulation of Se in roots. CONCLUSIONS The results of this study elucidate the evolution of CvWRKYs in the C. violifolia genome and provide valuable resources for further understanding the functional characteristics of WRKYs related to Se hyperaccumulation in C. violifolia.
Collapse
Affiliation(s)
- Xiao-Meng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
| | - Zhi-Gang Yuan
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
| | - Wei-Wei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Jia-Bao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Shui-Yuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, Hubei, 430048, China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei, 445000, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China.
| |
Collapse
|
5
|
Zhou Y, Zhao D, Duan Y, Chen L, Fan H, Wang Y, Liu X, Chen LQ, Xuan Y, Zhu X. AtSWEET1 negatively regulates plant susceptibility to root-knot nematode disease. FRONTIERS IN PLANT SCIENCE 2023; 14:1010348. [PMID: 36824200 PMCID: PMC9941640 DOI: 10.3389/fpls.2023.1010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The root-knot nematode Meloidogyne incognita is a pathogenic pest that causes severe economic loss to agricultural production by forming a parasitic relationship with its hosts. During the development of M. incognita in the host plant roots, giant cells are formed as a nutrient sink. However, the roles of sugar transporters during the giant cells gain sugar from the plant cells are needed to improve. Meanwhile, the eventual function of sugars will eventually be exported transporters (SWEETs) in nematode-plant interactions remains unclear. In this study, the expression patterns of Arabidopsis thaliana SWEETs were examined by inoculation with M. incognita at 3 days post inoculation (dpi) (penetration stage) and 18 dpi (developing stage). We found that few AtSWEETs responded sensitively to M. incognita inoculation, with the highest induction of AtSWEET1 (AT1G21460), a glucose transporter gene. Histological analyses indicated that the β-glucuronidase (GUS) and green fluorescent protein (GFP) signals were observed specifically in the galls of AtSWEET1-GUS and AtSWEET1-GFP transgenic plant roots, suggesting that AtSWEET1 was induced specifically in the galls. Genetic studies have shown that parasitism of M. incognita was significantly affected in atsweet1 compared to wild-type and complementation plants. In addition, parasitism of M. incognita was significantly affected in atsweet10 but not in atsweet13 and atsweet14, expression of which was induced by inoculation with M. incognita. Taken together, these data prove that SWEETs play important roles in plant and nematode interactions.
Collapse
Affiliation(s)
- Yuan Zhou
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yuxi Duan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuanyuan Wang
- College of Biological Science and Technology, Shenyang Agriculture University, Shenyang, China
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agriculture University, Shenyang, China
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yuanhu Xuan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| |
Collapse
|
6
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC PLANT BIOLOGY 2022; 22:596. [PMID: 36536303 PMCID: PMC9762057 DOI: 10.1186/s12870-022-03953-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants and play crucial roles in regulating plant growth and development processes and resisting abiotic stress. Cultivated tomato (Solanum lycopersicum) is an important vegetable crop worldwide; however, its growth, development, yield, and quality are currently severely constrained by abiotic stressors. In contrast, wild tomato species are more tolerant to abiotic stress and can grow normally in extreme environments. The main objective of this study was to identify, characterize, and perform gene expression analysis of LEA protein families from cultivated and wild tomato species to mine candidate genes and determine their potential role in abiotic stress tolerance in tomatoes. RESULTS Total 60, 69, 65, and 60 LEA genes were identified in S. lycopersicum, Solanum pimpinellifolium, Solanum pennellii, and Solanum lycopersicoides, respectively. Characterization results showed that these genes could be divided into eight clusters, with the LEA_2 cluster having the most members. Most LEA genes had few introns and were non-randomly distributed on chromosomes; the promoter regions contained numerous cis-acting regulatory elements related to abiotic stress tolerance and phytohormone responses. Evolutionary analysis showed that LEA genes were highly conserved and that the segmental duplication event played an important role in evolution of the LEA gene family. Transcription and expression pattern analyses revealed different regulatory patterns of LEA genes between cultivated and wild tomato species under normal conditions. Certain S. lycopersicum LEA (SlLEA) genes showed similar expression patterns and played specific roles under different abiotic stress and phytohormone treatments. Gene ontology and protein interaction analyses showed that most LEA genes acted in response to abiotic stimuli and water deficit. Five SlLEA proteins were found to interact with 11 S. lycopersicum WRKY proteins involved in development or resistance to stress. Virus-induced gene silencing of SlLEA6 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced drought resistance in S. lycopersicum. CONCLUSION These findings provide comprehensive information on LEA proteins in cultivated and wild tomato species and their possible functions under different abiotic and phytohormone stresses. The study systematically broadens our current understanding of LEA proteins and candidate genes and provides a theoretical basis for future functional studies aimed at improving stress resistance in tomato.
Collapse
Affiliation(s)
- Chunping Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
- College of Life Science and Technology, Xinjiang University, Urumqi, China.
| |
Collapse
|
7
|
Rathi D, Verma JK, Chakraborty S, Chakraborty N. Suspension cell secretome of the grain legume Lathyrus sativus (grasspea) reveals roles in plant development and defense responses. PHYTOCHEMISTRY 2022; 202:113296. [PMID: 35868566 DOI: 10.1016/j.phytochem.2022.113296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Plant secretomics has been especially important in understanding the molecular basis of plant development, stress resistance and biomarker discovery. In addition to sharing a similar role in maintaining cell metabolism and biogenesis with the animal secretome, plant-secreted proteins actively participate in signaling events crucial for cellular homeostasis during stress adaptation. However, investigation of the plant secretome remains largely overlooked, particularly in pulse crops, demanding urgent attention. To better understand the complexity of the secretome, we developed a reference map of a stress-resilient orphan legume, Lathyrus sativus (grasspea), which can be utilized as a potential proteomic resource. Secretome analysis of L. sativus led to the identification of 741 nonredundant proteins belonging to a myriad of functional classes, including antimicrobial, antioxidative and redox potential. Computational prediction of the secretome revealed that ∼29% of constituents are predicted to follow unconventional protein secretion (UPS) routes. We conducted additional in planta analysis to determine the localization of two secreted proteins, recognized as cell surface residents. Sequence-based homology comparison revealed that L. sativus shares ∼40% of the constituents reported thus far from in vitro and in planta secretome analysis in model and crop species. Significantly, we identified 571 unique proteins secreted from L. sativus involved in cell-to-cell communication, organ development, kinase-mediated signaling, and stress perception, among other critical roles. Conclusively, the grasspea secretome participates in putative crosstalk between genetic circuits that regulate developmental processes and stress resilience.
Collapse
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra Kumar Verma
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
8
|
Marchal C, Michalopoulou VA, Zou Z, Cevik V, Sarris PF. Show me your ID: NLR immune receptors with integrated domains in plants. Essays Biochem 2022; 66:527-539. [PMID: 35635051 PMCID: PMC9528084 DOI: 10.1042/ebc20210084] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding and leucine-rich repeat receptors (NLRs) are intracellular plant immune receptors that recognize pathogen effectors secreted into the plant cell. Canonical NLRs typically contain three conserved domains including a central nucleotide binding (NB-ARC) domain, C-terminal leucine-rich repeats (LRRs) and an N-terminal domain. A subfamily of plant NLRs contain additional noncanonical domain(s) that have potentially evolved from the integration of the effector targets in the canonical NLR structure. These NLRs with extra domains are thus referred to as NLRs with integrated domains (NLR-IDs). Here, we first summarize our current understanding of NLR-ID activation upon effector binding, focusing on the NLR pairs Pik-1/Pik-2, RGA4/RGA5, and RRS1/RPS4. We speculate on their potential oligomerization into resistosomes as it was recently shown for certain canonical plant NLRs. Furthermore, we discuss how our growing understanding of the mode of action of NLR-ID continuously informs engineering approaches to design new resistance specificities in the context of rapidly evolving pathogens.
Collapse
Affiliation(s)
- Clemence Marchal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
| | - Vassiliki A Michalopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
| | - Zhou Zou
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
| | - Volkan Cevik
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
| | - Panagiotis F Sarris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, 714 09 Heraklion, Crete, Greece
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Goverse A, Mitchum MG. At the molecular plant-nematode interface: New players and emerging paradigms. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102225. [PMID: 35537283 DOI: 10.1016/j.pbi.2022.102225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Plant-parasitic nematodes (PPNs) secrete an array of molecules that can lead to their detection by or promote infection of their hosts. However, the function of these molecules in plant cells is often unknown or limited to phenotypic observations. Similarly, how plant cells detect and/or respond to these molecules is still poorly understood. Here, we highlight recent advances in mechanistic insights into the molecular dialogue between PPNs and plants at the cellular level. New discoveries reveal a) the essential roles of extra- and intracellular plant receptors in PPN perception and the manipulation of host immune- or developmental pathways during infection and b) how PPNs target such receptors to manipulate their hosts. Finally, the plant secretory pathway has emerged as a critical player in PPN peptide delivery, feeding site formation and non-canonical resistance.
Collapse
Affiliation(s)
- Aska Goverse
- Laboratory of Nematology, Dept of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands.
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
10
|
Ayoub Khan M, Dongru K, Yifei W, Ying W, Penghui A, Zicheng W. Characterization of WRKY Gene Family in Whole-Genome and Exploration of Flowering Improvement Genes in Chrysanthemum lavandulifolium. FRONTIERS IN PLANT SCIENCE 2022; 13:861193. [PMID: 35557735 PMCID: PMC9087852 DOI: 10.3389/fpls.2022.861193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 05/27/2023]
Abstract
Chrysanthemum is a well-known ornamental plant with numerous uses. WRKY is a large family of transcription factors known for a variety of functions ranging from stress resistance to plant growth and development. Due to the limited research on the WRKY family in chrysanthemums, we examined them for the first time in Chrysanthemum lavandulifolium. A total of 138 ClWRKY genes were identified, which were classified into three groups. Group III in C. lavandulifolium contains 53 members, which is larger than group III of Arabidopsis. The number of introns varied from one to nine in the ClWRKY gene family. The "WRKYGQK" motif is conserved in 118 members, while other members showed slight variations. AuR and GRE responsive cis-acting elements were located in the promoter region of WRKY members, which are important for plant development and flowering induction. In addition, the W box was present in most genes; the recognition site for the WRKY gene may play a role in autoregulation and cross-regulation. The expression of the most variable 19 genes in terms of different parameters was observed at different stages. Among them, 10 genes were selected due to the presence of CpG islands, while nine genes were selected based on their close association with important Arabidopsis genes related to floral traits. ClWRKY36 and ClWRKY45 exhibit differential expression at flowering stages in the capitulum, while methylation is detected in three genes, including ClWRKY31, ClWRKY100, and ClWRKY129. Our results provide a basis for further exploration of WRKY members to find their functions in plant growth and development, especially in flowering traits.
Collapse
|
11
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 393] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
12
|
Li Y, Yang K, Yuan H, Zhang W, Sui Z, Wang N, Lin H, Zhang L, Zhang Y. Surface Nanosieving Polyether Sulfone Particles with Graphene Oxide Encapsulation for the Negative Isolation toward Extracellular Vesicles. Anal Chem 2021; 93:16835-16844. [PMID: 34889606 DOI: 10.1021/acs.analchem.1c03588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) contain specific biomarkers for disease diagnosis. Current EV isolation methods are hampered in important biological applications due to their low recovery and purity. Herein, we first present a novel EV negative isolation strategy based on surface nanosieving polyether sulfone particles with graphene oxide encapsulation (SNAPs) by which the coexisting proteins are irreversibly adsorbed by graphene oxide (GO) inside the particles, while EVs with large sizes are excluded from the outside due to the well-defined surface pore sizes (10-40 nm). By this method, the purity of the isolated EVs from urine could be achieved 4.91 ± 1.01e10 particles/μg, 40.9-234 times higher than those obtained by the ultracentrifugation (UC), size-exclusion chromatography (SEC), and PEG-based precipitation. In addition, recovery ranging from 90.4 to 93.8% could be obtained with excellent reproducibility (RSD < 6%). This was 1.8-4.3 times higher than those obtained via SEC and UC, comparable to that obtained by PEG-based precipitation. Taking advantage of this strategy, we further isolated urinary EVs from IgA nephropathy (IgAN) patients and healthy donors for comparative proteome analysis, by which significantly regulated EV proteins were found to distinguish IgAN patients from healthy donors. All of the results indicated that our strategy would provide a new avenue for highly efficient EV isolation to enable many important clinical applications.
Collapse
Affiliation(s)
- Yilan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huiming Yuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Wang
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hongli Lin
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
13
|
Transcription Factor Pso9TF Assists Xinjiang Wild Myrobalan Plum ( Prunus sogdiana) PsoRPM3 Disease Resistance Protein to Resist Meloidogyne incognita. PLANTS 2021; 10:plants10081561. [PMID: 34451606 PMCID: PMC8402125 DOI: 10.3390/plants10081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
The root-knot nematode (Meloidogyne incognita) causes huge economic losses in the agricultural industry throughout the world. Control methods against these polyphagous plant endoparasites are sparse, the preferred one being the deployment of plant cultivars or rootstocks bearing resistance genes against Meloidogyne species. Our previous study has cloned one resistance gene, PsoRPM3, from Xinjiang wild myrobalan plum (Prunus sogdiana). However, the function of PsoRPM3 remains elusive. In the present study, we have investigated the regulatory mechanism of PsoRPM3 in plant defense responses to M. incognita. Our results indicate that fewer giant cells were detected in the roots of the PsoRPM3 transgenic tobacco than wild tobacco lines after incubation with M. incognita. Transient transformations of full-length and TN structural domains of PsoRPM3 have induced significant hypersensitive responses (HR), suggesting that TIR domain might be the one which caused HR. Further, yeast two-hybrid results revealed that the full-length and LRR domain of PsoRPM3 could interact with the transcription factor Pso9TF. The addition of Pso9TF increased the ROS levels and induced HR. Thus, our data revealed that the LRR structural domain of PsoRPM3 may be associated with signal transduction. Moreover, we did not find any relative inductions of defense-related genes PsoEDS1, PsoPAD4 and PsoSAG101 in P. sogdiana, which has been incubated with M. incognita. In summary, our work has shown the key functional domain of PsoRPM3 in the regulation of defense responses to M. incognita in P. sogdiana.
Collapse
|
14
|
Snigdha M, Prasath D. Transcriptomic analysis to reveal the differentially expressed miRNA targets and their miRNAs in response to Ralstonia solanacearum in ginger species. BMC PLANT BIOLOGY 2021; 21:355. [PMID: 34325661 PMCID: PMC8323298 DOI: 10.1186/s12870-021-03108-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bacterial wilt is the most devastating disease in ginger caused by Ralstonia solanacearum. Even though ginger (Zingiber officinale) and mango ginger (Curcuma amada) are from the same family Zingiberaceae, the latter is resistant to R. solanacearum infection. MicroRNAs have been identified in many crops which regulates plant-pathogen interaction, either through silencing genes or by blocking mRNA translation. However, miRNA's vital role and its targets in mango ginger in protecting bacterial wilt is not yet studied extensively. In the present study, using the "psRNATarget" server, we analyzed available ginger (susceptible) and mango ginger (resistant) transcriptome to delineate and compare the microRNAs (miRNA) and their target genes (miRTGs). RESULTS A total of 4736 and 4485 differential expressed miRTGs (DEmiRTGs) were identified in ginger and mango ginger, respectively, in response to R. solanacearum. Functional annotation results showed that mango ginger had higher enrichment than ginger in top enriched GO terms. Among the DEmiRTGs, 2105 were common in ginger and mango ginger. However, 2337 miRTGs were expressed only in mango ginger which includes 62 defence related and upregulated miRTGs. We also identified 213 miRTGs upregulated in mango ginger but downregulated in ginger, out of which 23 DEmiRTGS were defence response related. We selected nine miRNA/miRTGs pairs from the data set of common miRTGs of ginger and mango ginger and validated using qPCR. CONCLUSIONS Our data covered the expression information of 9221 miRTGs. We identified nine miRNA/miRTGs key candidate pairs in response to R. solanacearum infection in ginger. This is the first report of the integrated analysis of miRTGs and miRNAs in response to R. solanacearum infection among ginger species. This study is expected to deliver several insights in understanding the miRNA regulatory network in ginger and mango ginger response to bacterial wilt.
Collapse
Affiliation(s)
- Mohandas Snigdha
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673012, India
| | - Duraisamy Prasath
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673012, India.
| |
Collapse
|
15
|
Chen X, Tong C, Zhang X, Song A, Hu M, Dong W, Chen F, Wang Y, Tu J, Liu S, Tang H, Zhang L. A high-quality Brassica napus genome reveals expansion of transposable elements, subgenome evolution and disease resistance. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:615-630. [PMID: 33073445 PMCID: PMC7955885 DOI: 10.1111/pbi.13493] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 05/03/2023]
Abstract
Rapeseed (Brassica napus L.) is a recent allotetraploid crop, which is well known for its high oil production. Here, we report a high-quality genome assembly of a typical semi-winter rapeseed cultivar, 'Zhongshuang11' (hereafter 'ZS11'), using a combination of single-molecule sequencing and chromosome conformation capture (Hi-C) techniques. Most of the high-confidence sequences (93.1%) were anchored to the individual chromosomes with a total of 19 centromeres identified, matching the exact chromosome count of B. napus. The repeat sequences in the A and C subgenomes in B. napus expanded significantly from 500 000 years ago, especially over the last 100 000 years. These young and recently amplified LTR-RTs showed dispersed chromosomal distribution but significantly preferentially clustered into centromeric regions. We exhaustively annotated the nucleotide-binding leucine-rich repeat (NLR) gene repertoire, yielding a total of 597 NLR genes in B. napus genome and 17.4% of which are paired (head-to-head arrangement). Based on the resequencing data of 991 B. napus accessions, we have identified 18 759 245 single nucleotide polymorphisms (SNPs) and detected a large number of genomic regions under selective sweep among the three major ecotype groups (winter, semi-winter and spring) in B. napus. We found 49 NLR genes and five NLR gene pairs colocated in selective sweep regions with different ecotypes, suggesting a rapid diversification of NLR genes during the domestication of B. napus. The high quality of our B. napus 'ZS11' genome assembly could serve as an important resource for the study of rapeseed genomics and reveal the genetic variations associated with important agronomic traits.
Collapse
Affiliation(s)
- Xuequn Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil CropsThe Ministry of Agriculture and Rural Affairs of PRCOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Aixia Song
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ming Hu
- The Key Laboratory of Biology and Genetic Improvement of Oil CropsThe Ministry of Agriculture and Rural Affairs of PRCOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Wei Dong
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fei Chen
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic ImprovementNational Center of Rapeseed ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil CropsThe Ministry of Agriculture and Rural Affairs of PRCOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyKey Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of CropsCollege of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
16
|
Alekcevetch JC, de Lima Passianotto AL, Ferreira EGC, Dos Santos AB, da Silva DCG, Dias WP, Belzile F, Abdelnoor RV, Marcelino-Guimarães FC. Genome-wide association study for resistance to the Meloidogyne javanica causing root-knot nematode in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:777-792. [PMID: 33469696 DOI: 10.1007/s00122-020-03723-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/03/2020] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE A locus on chromosome 13, containing multiple TIR-NB-LRR genes and SNPs associated with M. javanica resistance, was identified using a combination of GWAS, resequencing, genetic mapping and expression profiling. Meloidogyne javanica, a root-knot nematode, is an important problem in soybean-growing areas, leading to severe yield losses. Some accessions have been identified carrying resistance loci to this nematode. In this study, a set of 317 soybean accessions was characterized for resistance to M. javanica. A genome-wide association study was performed using SNPs from genotyping-by-sequencing, and a region of 29.2 kb on chromosome 13 was identified. An analysis of haplotypes showed that SNPs were able to discriminate between susceptible and resistant accessions, with 25 accessions sharing the haplotype associated with resistance. Furthermore, five accessions that exhibited resistance without carrying this haplotype may carry different loci conferring resistance to M. javanica. We also conducted the screening of the SNPs in the USDA soybean germplasm, revealing that several soybean accessions previously reported as resistant to other nematodes also shared the resistance haplotype on chromosome 13. Two SNP-based TaqMan® assays were developed and validated in two panels of soybean cultivars and in biparental populations. In silico analysis of the region associated with resistance identified the occurrence of genes with structural similarity with classical major resistance genes (NBS-LRR genes). Specifically, several nonsynonymous SNPs were observed in Glyma.13g194800 and Glyma.13g194900. The expression profile of these candidate genes demonstrated that the two gene models were up-regulated in the resistance source PI 505,099 after nematode infection. Overall, the SNPs associated with resistance and the genes identified constitute an important tool for introgression of resistance to the root-knot nematode by marker-assisted selection in soybean breeding programs.
Collapse
Affiliation(s)
| | | | | | - Adriana Brombini Dos Santos
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass road, Warta County, PR, Brazil
| | - Danielle Cristina Gregório da Silva
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass road, Warta County, PR, Brazil
| | - Waldir Pereira Dias
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass road, Warta County, PR, Brazil
| | - François Belzile
- Department of Plant Sciences and Institute of Integrative Biology and Systems (IBIS), Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Ricardo Vilela Abdelnoor
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass road, Warta County, PR, Brazil
| | | |
Collapse
|
17
|
Bugge K, Staby L, Salladini E, Falbe-Hansen RG, Kragelund BB, Skriver K. αα-Hub domains and intrinsically disordered proteins: A decisive combo. J Biol Chem 2021; 296:100226. [PMID: 33361159 PMCID: PMC7948954 DOI: 10.1074/jbc.rev120.012928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023] Open
Abstract
Hub proteins are central nodes in protein-protein interaction networks with critical importance to all living organisms. Recently, a new group of folded hub domains, the αα-hubs, was defined based on a shared αα-hairpin supersecondary structural foundation. The members PAH, RST, TAFH, NCBD, and HHD are found in large proteins such as Sin3, RCD1, TAF4, CBP, and harmonin, which organize disordered transcriptional regulators and membrane scaffolds in interactomes of importance to human diseases and plant quality. In this review, studies of structures, functions, and complexes across the αα-hubs are described and compared to provide a unified description of the group. This analysis expands the associated molecular concepts of "one domain-one binding site", motif-based ligand binding, and coupled folding and binding of intrinsically disordered ligands to additional concepts of importance to signal fidelity. These include context, motif reversibility, multivalency, complex heterogeneity, synergistic αα-hub:ligand folding, accessory binding sites, and supramodules. We propose that these multifaceted protein-protein interaction properties are made possible by the characteristics of the αα-hub fold, including supersite properties, dynamics, variable topologies, accessory helices, and malleability and abetted by adaptability of the disordered ligands. Critically, these features provide additional filters for specificity. With the presentations of new concepts, this review opens for new research questions addressing properties across the group, which are driven from concepts discovered in studies of the individual members. Combined, the members of the αα-hubs are ideal models for deconvoluting signal fidelity maintained by folded hubs and their interactions with intrinsically disordered ligands.
Collapse
Affiliation(s)
- Katrine Bugge
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Staby
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Edoardo Salladini
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus G Falbe-Hansen
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Karen Skriver
- REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|