1
|
Wang P, Wu Y, Zhang J, Si J, Wang X, Jiao Z, Meng X, Zhang L, Meng F, Li Y. TaMIR397-6A and -6B Homoeologs Encode Active miR397 Contributing to the Regulation of Grain Size in Hexaploid Wheat. Int J Mol Sci 2024; 25:7696. [PMID: 39062941 PMCID: PMC11276883 DOI: 10.3390/ijms25147696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Wheat is one of the most important food crops globally, and understanding the regulation of grain size is crucial for wheat breeding to achieve a higher grain yield. MicroRNAs (miRNAs) play vital roles in plant growth and development. However, the miRNA-mediated mechanism underlying grain size regulation remains largely elusive in wheat. Here, we report the characterization and functional validation of a miRNA, TamiR397a, associated with grain size regulation in wheat. The function of three TaMIR397 homoeologs was determined through histochemical β-glucuronidase-dependent assay. MiRNA expression was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and the function of TamiR397a was validated through its transgenic overexpression and repression in wheat. It was found that TaMIR397-6A and TaMIR397-6B encode active TamiR397a. The expression profiling indicated that TamiR397a was differentially expressed in various tissues and gradually up-regulated during grain filling. The inhibition of TamiR397a perturbed grain development, leading to a decrease in grain size and weight. Conversely, the overexpression of TamiR397a resulted in increased grain size and weight by accelerating the grain filling process. Transcriptome analysis revealed that TamiR397a regulates a set of genes involved in hormone response, desiccation tolerance, regulation of cellular senescence, seed dormancy, and seed maturation biological processes, which are important for grain development. Among the down-regulated genes in the grains of the TamiR397a-overexpressing transgenic plants, 11 putative targets of the miRNA were identified. Taken together, our results demonstrate that TamiR397a is a positive regulator of grain size and weight, offering potential targets for breeding wheat with an increased grain yield.
Collapse
Affiliation(s)
- Putong Wang
- Henan Technology Innovation Center of Wheat, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Wu
- Henan Technology Innovation Center of Wheat, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Junhui Zhang
- Henan Technology Innovation Center of Wheat, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiao Si
- Henan Technology Innovation Center of Wheat, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoteng Wang
- Henan Technology Innovation Center of Wheat, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongfa Jiao
- Henan Technology Innovation Center of Wheat, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaodan Meng
- Henan Technology Innovation Center of Wheat, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Li Zhang
- Henan Technology Innovation Center of Wheat, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Fanrong Meng
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongchun Li
- Henan Technology Innovation Center of Wheat, State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Wang M, Wang L, Wang S, Zhang J, Fu Z, Wu P, Yang A, Wu D, Sun G, Wang C. Identification and Analysis of lncRNA and circRNA Related to Wheat Grain Development. Int J Mol Sci 2024; 25:5484. [PMID: 38791522 PMCID: PMC11122269 DOI: 10.3390/ijms25105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The role of lncRNA and circRNA in wheat grain development is still unclear. The objectives of this study were to characterize the lncRNA and circRNA in the wheat grain development and to construct the interaction network among lncRNA, circRNA, and their target miRNA to propose a lncRNA-circRNA-miRNA module related to wheat grain development. Full transcriptome sequencing on two wheat varieties (Annong 0942 and Anke 2005) with significant differences in 1000-grain weight at 10 d (days after pollination), 20 d, and 30 d of grain development were conducted. We detected 650, 736, and 609 differentially expressed lncRNA genes, and 769, 1054, and 1062 differentially expressed circRNA genes in the grains of 10 days, 20 days and 30 days after pollination between Annong 0942 and Anke 2005, respectively. An analysis of the lncRNA-miRNA and circRNA-miRNA targeting networks reveals that circRNAs exhibit a more complex and extensive interaction network in the development of cereal grains and the formation of grain shape. Central to these interactions are tae-miR1177, tae-miR1128, and tae-miR1130b-3p. In contrast, lncRNA genes only form a singular network centered around tae-miR1133 and tae-miR5175-5p when comparing between varieties. Further analysis is conducted on the underlying genes of all target miRNAs, we identified TaNF-YB1 targeted by tae-miR1122a and TaTGW-7B targeted by miR1130a as two pivotal regulatory genes in the development of wheat grains. The quantitative real-time PCR (qRT-PCR) and dual-luciferase reporter assays confirmed the target regulatory relationships between miR1130a-TaTGW-7B and miR1122a-TaNF-YB1. We propose a network of circRNA and miRNA-mediated gene regulation in the development of wheat grains.
Collapse
Affiliation(s)
- Meng Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China (A.Y.); (C.W.)
| | - Lu Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China (A.Y.); (C.W.)
| | - Shuanghong Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China (A.Y.); (C.W.)
| | - Junli Zhang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China (A.Y.); (C.W.)
| | - Zhe Fu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China (A.Y.); (C.W.)
| | - Panpan Wu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China (A.Y.); (C.W.)
| | - Anqi Yang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China (A.Y.); (C.W.)
| | - Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China (A.Y.); (C.W.)
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Chengyu Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China (A.Y.); (C.W.)
| |
Collapse
|
3
|
Saroha M, Arya A, Singh G, Sharma P. Genome-wide expression analysis of novel heat-responsive microRNAs and their targets in contrasting wheat genotypes at reproductive stage under terminal heat stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1328114. [PMID: 38660446 PMCID: PMC11039868 DOI: 10.3389/fpls.2024.1328114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Introduction Heat stress at terminal stage of wheat is critical and leads to huge yield losses worldwide. microRNAs (miRNAs) play significant regulatory roles in gene expression associated with abiotic and biotic stress at the post-transcriptional level. Methods In the present study, we carried out a comparative analysis of miRNAs and their targets in flag leaves as well as developing seeds of heat tolerant (RAJ3765) and heat susceptible (HUW510) wheat genotypes under heat stress and normal conditions using small RNA and degradome sequencing. Results and discussion A total of 84 conserved miRNAs belonging to 35 miRNA families and 93 novel miRNAs were identified in the 8 libraries. Tae-miR9672a-3p, tae-miR9774, tae-miR9669-5p, and tae-miR5048-5p showed the highest expression under heat stress. Tae-miR9775, tae-miR9662b-3p, tae-miR1120a, tae-miR5084, tae-miR1122a, tae-miR5085, tae-miR1118, tae-miR1130a, tae-miR9678-3p, tae-miR7757-5p, tae-miR9668-5p, tae-miR5050, tae-miR9652-5p, and tae-miR9679-5p were expressed only in the tolerant genotype, indicating their role in heat tolerance. Comparison between heat-treated and control groups revealed that 146 known and 57 novel miRNAs were differentially expressed in the various tissues. Eight degradome libraries sequence identified 457 targets of the differentially expressed miRNAs. Functional analysis of the targets indicated their involvement in photosynthesis, spliceosome, biosynthesis of nucleotide sugars and protein processing in the endoplasmic reticulum, arginine and proline metabolism and endocytosis. Conclusion This study increases the number of identified and novel miRNAs along with their roles involved in heat stress response in contrasting genotypes at two developing stages of wheat.
Collapse
Affiliation(s)
- Monika Saroha
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Aditi Arya
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Gyanendra Singh
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
4
|
Vignesh P, Mahadevaiah C, Selvamuthu K, Mahadeva Swamy HK, Sreenivasa V, Appunu C. Comparative genome-wide characterization of salt responsive micro RNA and their targets through integrated small RNA and de novo transcriptome profiling in sugarcane and its wild relative Erianthus arundinaceus. 3 Biotech 2024; 14:24. [PMID: 38162015 PMCID: PMC10756875 DOI: 10.1007/s13205-023-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Soil salinity and saline irrigation water are major constraints in sugarcane affecting the production of cane and sugar yield. To understand the salinity induced responses and to identify novel genomic resources, integrated de novo transcriptome and small RNA sequencing in sugarcane wild relative, Erianthus arundinaceus salt tolerant accession IND 99-907 and salt-sensitive sugarcane genotype Co 97010 were performed. A total of 362 known miRNAs belonging to 62 families and 353 miRNAs belonging to 63 families were abundant in IND 99-907 and Co 97010 respectively. The miRNA families such as miR156, miR160, miR166, miR167, miR169, miR171, miR395, miR399, miR437 and miR5568 were the most abundant with more than ten members in both genotypes. The differential expression analysis of miRNA reveals that 221 known miRNAs belonging to 48 families and 130 known miRNAs belonging to 42 families were differentially expressed in IND 99-907 and Co 97010 respectively. A total of 12,693 and 7982 miRNA targets against the monoploid mosaic genome and a total of 15,031 and 12,152 miRNA targets against the de novo transcriptome were identified for differentially expressed known miRNAs of IND 99-907 and Co 97010 respectively. The gene ontology (GO) enrichment analysis of the miRNA targets revealed that 24, 12 and 14 enriched GO terms (FDR < 0.05) for biological process, molecular function and cellular component respectively. These miRNAs have many targets that associated in regulation of biotic and abiotic stresses. Thus, the genomic resources generated through this study are useful for sugarcane crop improvement through biotechnological and advanced breeding approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03867-7.
Collapse
Affiliation(s)
- Palanisamy Vignesh
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Channappa Mahadevaiah
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
- ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, 560089 India
| | - Kannan Selvamuthu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Venkatarayappa Sreenivasa
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
5
|
Ding G, Shen L, Dai J, Jackson R, Liu S, Ali M, Sun L, Wen M, Xiao J, Deakin G, Jiang D, Wang XE, Zhou J. The Dissection of Nitrogen Response Traits Using Drone Phenotyping and Dynamic Phenotypic Analysis to Explore N Responsiveness and Associated Genetic Loci in Wheat. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0128. [PMID: 38148766 PMCID: PMC10750832 DOI: 10.34133/plantphenomics.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
Inefficient nitrogen (N) utilization in agricultural production has led to many negative impacts such as excessive use of N fertilizers, redundant plant growth, greenhouse gases, long-lasting toxicity in ecosystem, and even effect on human health, indicating the importance to optimize N applications in cropping systems. Here, we present a multiseasonal study that focused on measuring phenotypic changes in wheat plants when they were responding to different N treatments under field conditions. Powered by drone-based aerial phenotyping and the AirMeasurer platform, we first quantified 6 N response-related traits as targets using plot-based morphological, spectral, and textural signals collected from 54 winter wheat varieties. Then, we developed dynamic phenotypic analysis using curve fitting to establish profile curves of the traits during the season, which enabled us to compute static phenotypes at key growth stages and dynamic phenotypes (i.e., phenotypic changes) during N response. After that, we combine 12 yield production and N-utilization indices manually measured to produce N efficiency comprehensive scores (NECS), based on which we classified the varieties into 4 N responsiveness (i.e., N-dependent yield increase) groups. The NECS ranking facilitated us to establish a tailored machine learning model for N responsiveness-related varietal classification just using N-response phenotypes with high accuracies. Finally, we employed the Wheat55K SNP Array to map single-nucleotide polymorphisms using N response-related static and dynamic phenotypes, helping us explore genetic components underlying N responsiveness in wheat. In summary, we believe that our work demonstrates valuable advances in N response-related plant research, which could have major implications for improving N sustainability in wheat breeding and production.
Collapse
Affiliation(s)
- Guohui Ding
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Shen
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Dai
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Robert Jackson
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| | - Shuchen Liu
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Mujahid Ali
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Mingxing Wen
- Zhenjiang Institute of Agricultural Science, Jurong, Jiangsu 212400, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Greg Deakin
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| | - Dong Jiang
- Regional Technique Innovation Center for Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture,
Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiu-e Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Ji Zhou
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| |
Collapse
|
6
|
Samynathan R, Venkidasamy B, Shanmugam A, Ramalingam S, Thiruvengadam M. Functional role of microRNA in the regulation of biotic and abiotic stress in agronomic plants. Front Genet 2023; 14:1272446. [PMID: 37886688 PMCID: PMC10597799 DOI: 10.3389/fgene.2023.1272446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
The increasing demand for food is the result of an increasing population. It is crucial to enhance crop yield for sustainable production. Recently, microRNAs (miRNAs) have gained importance because of their involvement in crop productivity by regulating gene transcription in numerous biological processes, such as growth, development and abiotic and biotic stresses. miRNAs are small, non-coding RNA involved in numerous other biological functions in a plant that range from genomic integrity, metabolism, growth, and development to environmental stress response, which collectively influence the agronomic traits of the crop species. Additionally, miRNA families associated with various agronomic properties are conserved across diverse plant species. The miRNA adaptive responses enhance the plants to survive environmental stresses, such as drought, salinity, cold, and heat conditions, as well as biotic stresses, such as pathogens and insect pests. Thus, understanding the detailed mechanism of the potential response of miRNAs during stress response is necessary to promote the agronomic traits of crops. In this review, we updated the details of the functional aspects of miRNAs as potential regulators of various stress-related responses in agronomic plants.
Collapse
Affiliation(s)
- Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ashokraj Shanmugam
- Plant Physiology and Biotechnology Division, UPASI Tea Research Foundation, Coimbatore, Tamil Nadu, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Lab, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Ninkuu V, Liu Z, Sun X. Genetic regulation of nitrogen use efficiency in Gossypium spp. PLANT, CELL & ENVIRONMENT 2023; 46:1749-1773. [PMID: 36942358 DOI: 10.1111/pce.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
Cotton (Gossypium spp.) is the most important fibre crop, with desirable characteristics preferred for textile production. Cotton fibre output relies heavily on nitrate as the most important source of inorganic nitrogen (N). However, nitrogen dynamics in extreme environments limit plant growth and lead to yield loss and pollution. Therefore, nitrogen use efficiency (NUE), which involves the utilisation of the 'right rate', 'right source', 'right time', and 'right place' (4Rs), is key for efficient N management. Recent omics techniques have genetically improved NUE in crops. We herein highlight the mechanisms of N uptake and assimilation in the vegetative and reproductive branches of the cotton plant while considering the known and unknown regulatory factors. The phylogenetic relationships among N transporters in four Gossypium spp. have been reviewed. Further, the N regulatory genes that participate in xylem transport and phloem loading are also discussed. In addition, the functions of microRNAs and transcription factors in modulating the expression of target N regulatory genes are highlighted. Overall, this review provides a detailed perspective on the complex N regulatory mechanism in cotton, which would accelerate the research toward improving NUE in crops.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Abstract
Wheat grain development is an important biological process to determine grain yield and quality, which is controlled by the interplay of genetic, epigenetic, and environmental factors. Wheat grain development has been extensively characterized at the phenotypic and genetic levels. The advent of innovative molecular technologies allows us to characterize genes, proteins, and regulatory factors involved in wheat grain development, which have enhanced our understanding of the wheat seed development process. However, wheat is an allohexaploid with a large genome size, the molecular mechanisms underlying the wheat grain development have not been well understood as those in diploids. Understanding grain development, and how it is regulated, is of fundamental importance for improving grain yield and quality through conventional breeding or genetic engineering. Herein, we review the current discoveries on the molecular mechanisms underlying wheat grain development. Notably, only a handful of genes that control wheat grain development have, thus far, been well characterized, their interplay underlying the grain development remains elusive. The synergistic network-integrated genomics and epigenetics underlying wheat grain development and how the subgenome divergence dynamically and precisely regulates wheat grain development are unknown.
Collapse
Affiliation(s)
- Yiling Wang
- College of Life Science, Shanxi Normal University, Taiyuan, China
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Canada
| |
Collapse
|
9
|
Gómez-Martín C, Zhou H, Medina JM, Aparicio-Puerta E, Hackenberg M, Shi B. Comprehensive, integrative genomic analysis of microRNA expression profiles in different tissues of two wheat cultivars with different traits. Funct Integr Genomics 2022; 23:15. [PMID: 36562829 DOI: 10.1007/s10142-022-00920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Wheat is one of the most important food sources on Earth. MicroRNAs (miRNA) play important roles in wheat productivity. To identify wheat miRNAs, we constructed and sequenced sRNA libraries from leaves and roots of two wheat cultivars (RAC875 and Kukri) with many different traits. Given that available miRNA wheat complement in the plant-specific database PmiREN ( https://pmiren.com ) does not include root tissues and root-associated miRNAs might thus be missing, we performed first the prediction of novel miRNAs using the sRNAbench tool. We found a total of 150 putatively novel miRNA genes with expression of both arms from 289 unique mature sequences and nearly 30% of all miRNA reads in roots corresponded to novel miRNAs. In contrast, this figure in leaves dropped to under 3%, confirming the undersampling of roots in the complement of known miRNAs. By using 120 publicly available wheat datasets, 598 Zea mays small RNA libraries, 64 plant species genomes, wheat degradome library, and functional enrichment analysis, a subset of novel miRNAs were confirmed as bona-fide miRNAs. Of the total 605 miRNAs identified in this study inclusive of 316 known miRNAs, 528 miRNAs were shared by both cultivars, 429 miRNAs were shared by both root tissues and 329 miRNAs were shared by both leaf tissues. In addition, 32 miRNAs were specific to Kukri while 45 miRNAs were specific to RAC875. These miRNAs had diverse functions, such as regulation of gene transcription, protein translation, energy metabolism, and cell cycle progression. Our data provide a genome-wide miRNA expression profile in these two wheat cultivars and help functional studies of wheat genomics.
Collapse
Affiliation(s)
- Cristina Gómez-Martín
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hui Zhou
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - José Maria Medina
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain.,Bioinformatics Laboratory, Centro de Investigación Biomédica, Biotechnology Institute, PTS, Avda. del Conocimiento S/N, 18100, Granada, Spain
| | - Ernesto Aparicio-Puerta
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain.,Bioinformatics Laboratory, Centro de Investigación Biomédica, Biotechnology Institute, PTS, Avda. del Conocimiento S/N, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University of Granada, 18071, Granada, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18071, Granada, Spain
| | - Michael Hackenberg
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071, Granada, Spain. .,Bioinformatics Laboratory, Centro de Investigación Biomédica, Biotechnology Institute, PTS, Avda. del Conocimiento S/N, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University of Granada, 18071, Granada, Spain. .,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18071, Granada, Spain.
| | - Bujun Shi
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
10
|
Zhang B, Liu G, Song J, Jia B, Yang S, Ma J, Liu J, Shahzad K, Wang W, Pei W, Wu M, Zhang J, Yu J. Analysis of the MIR396 gene family and the role of MIR396b in regulating fiber length in cotton. PHYSIOLOGIA PLANTARUM 2022; 174:e13801. [PMID: 36258652 DOI: 10.1111/ppl.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Cotton fiber is one of the most important natural raw materials in the world textile industry. Improving fiber yield and quality has always been the main goal. MicroRNAs, as typical small noncoding RNAs, could affect fiber length during different stages of fiber development. Based on differentially expressed microRNA in the two interspecific backcross inbred lines (BILs) with a significant difference in fiber length, we identified the miR396 gene family in the two tetraploid cotton genomes and found MIR396b_D13 as the functional precursor to produce mature miR396 during the fiber elongation stage. Among 46 target genes regulated by miR396b, the GROWTH-REGULATING FACTOR 5 gene (GRF5, Gh_A10G0492) had a differential expression level in the two BILs during fiber elongation stage. The expression patterns indicated that the miR396b-GRF5 regulatory module has a critical role in fiber development. Furthermore, virus-induced gene silencing (VIGS) of miR396b significantly produced longer fiber than the wild type, and the expression level of GRF5 showed the reverse trends of the miR396b expression level. The analysis of co-expression network for the GRF5 gene suggested that a cytochrome P450 gene functions as an allene oxide synthase (Gh_D06G0089, AOS), which plays a critical role in jasmonate biosynthetic pathway. In conclusion, our results revealed that the miR396b-GRF5 module has a critical role in fiber development. These findings provide a molecular foundation for fiber quality improvement in the future.
Collapse
Affiliation(s)
- Bingbing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoyuan Liu
- School of Life Science, Nantong University, Nantong, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxian Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kashif Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenkui Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
11
|
Li N, Liu T, Guo F, Yang J, Shi Y, Wang S, Sun D. Identification of long non-coding RNA-microRNA-mRNA regulatory modules and their potential roles in drought stress response in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1011064. [PMID: 36304395 PMCID: PMC9592863 DOI: 10.3389/fpls.2022.1011064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 06/12/2023]
Abstract
Drought is one of the most severe abiotic stresses that influence wheat production across the globe. Understanding the molecular regulatory network of wheat in response to drought is of great importance in molecular breeding. Noncoding RNAs influence plant development and resistance to abiotic stresses by regulating gene expression. In this study, whole-transcriptome sequencing was performed on the seedlings of two wheat varieties with contrasting levels of drought tolerance under drought and control conditions to identify long noncoding RNAs (lncRNAs), micro RNAs (miRNAs), and mRNAs related to drought stress and explore the potential lncRNA-miRNA-mRNA regulatory modules in controlling wheat drought stress response. A total of 1515 differentially expressed lncRNAs (DELs), 209 differentially expressed miRNAs (DEMs), and 20462 differentially expressed genes (DEGs) were identified. Of the 20462 DEGs, 1025 were identified as potential wheat drought resistance-related DEGs. Based on the regulatory relationship and expression patterns of DELs, DEMs, and DEGs, 10 DEL-DEM-DEG regulatory modules related to wheat drought stress response were screened, and preliminary expression verification of two important candidate modules was performed. Our results revealed the possible roles of lncRNA-miRNA-mRNA modules in regulatory networks related to drought tolerance and provided useful information as valuable genomic resources in molecular breeding of wheat.
Collapse
|
12
|
Li J, Wang C, Zhou T, Jin H, Liu X. Identification and characterization of miRNAome and target genes in Pseudostellaria heterophylla. PLoS One 2022; 17:e0275566. [PMID: 36197881 PMCID: PMC9534447 DOI: 10.1371/journal.pone.0275566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
miRNAs play a crucial role in the development and growth of plants by inhibiting the function of targeted genes at the post-transcription level. However, no miRNAs in Pseudostellaria heterophylla have been reported and their function in the morphogenesis of organs is still unclear. In this study, a total of 159 conserved miRNAs (belonging to 64 families) and 303 level miRNAs were identified from P. heterophylla. Some of them showed specifically up or down-regulated expression in different tissues and numbers of unigenes involved in Plant-pathogen interaction and MAPK signaling pathway-plant were targeted. The significant negative correlation of expression profiles between 30 miRNAs and their target genes (37 unigenes) was observed, respectively. Further, a large number of genes involved with signal transduction of auxin, zeatin, abscisic acid and, jasmonic acid were targeted. Predicated targets of two miRNAs were validated by 5'RLM-RACE, respectively. A large number of mRNAs from four pathogens were targeted by miRNAs from P. heterophylla and some of them were targeted by miR414. In summary, we reported a population of miRNAs from four different vegetative tissues of P. heterophylla by high throughput sequencing, which was analyzed by combining with the constructed transcriptome. These results may help to explain the function of miRNAs in the morphogenesis of organs and defense of pathogens, and may provide theoretical basis for breeding and genetic improvement of P. heterophylla.
Collapse
Affiliation(s)
- Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- * E-mail:
| | - Chongmin Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Haijun Jin
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoqing Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
13
|
Zhu Y, Zhao S, Deng K, Wu P, Feng K, Li L. Integrated mRNA and Small RNA Sequencing Reveals a microRNA Regulatory Network Associated with Starch Biosynthesis in Lotus ( Nelumbo nucifera Gaertn.) Rhizomes. Int J Mol Sci 2022; 23:ijms23147605. [PMID: 35886954 PMCID: PMC9318480 DOI: 10.3390/ijms23147605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/07/2022] Open
Abstract
Internode starch biosynthesis is one of the most important traits in lotus rhizome because of its relation to crop productivity. Understanding the microRNA (miRNA) and mRNA expression profiles related to lotus internode starch biosynthesis would help develop molecular improvement strategies, but they are not yet well-investigated. To identify genes and miRNAs involved in internode starch biosynthesis, the cDNA and small RNA libraries of Z6-1, Z6-2, and Z6-3 were sequenced, and their expression were further studied. Through combined analyses of transcriptome data and small RNA sequencing data, a complex co-expression regulatory network was constructed, in which 20 miRNAs could modulate starch biosynthesis in different internodes by tuning the expression of 10 target genes. QRT-PCR analysis, transient co-expression experiment and dual luciferase assay comprehensively confirmed that NnumiR396a down-regulated the expression of NnSS2 and ultimately prevents the synthesis of amylopectin, and NnumiR396b down-regulated the expression of NnPGM2 and ultimately prevents the synthesis of total starch. Our results suggest that miRNAs play a critical role in starch biosynthesis in lotus rhizome, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing lotus rhizome.
Collapse
Affiliation(s)
- Yamei Zhu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
| | - Shuping Zhao
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
| | - Kangming Deng
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
| | - Peng Wu
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
| | - Kai Feng
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
| | - Liangjun Li
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225000, China; (Y.Z.); (S.Z.); (K.D.); (P.W.); (K.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
- Correspondence: ; Tel.: +86-054187971026
| |
Collapse
|
14
|
Li W, Yu Y, Chen X, Fang Q, Yang A, Chen X, Wu L, Wang C, Wu D, Ye S, Wu D, Sun G. N6-Methyladenosine dynamic changes and differential methylation in wheat grain development. PLANTA 2022; 255:125. [PMID: 35567638 DOI: 10.1007/s00425-022-03893-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
More methylation changes occur in late interval than in early interval of wheat seed development with protein and the starch synthesis-related pathway enriched in the later stages. Wheat seed development is a critical process to determining wheat yield and quality, which is controlled by genetics, epigenetics and environments. The N6-methyladenosine (m6A) modification is a reversible and dynamic process and plays regulatory role in plant development and stress responses. To better understand the role of m6A in wheat grain development, we characterized the m6A modification at 10 day post-anthesis (DPA), 20 DPA and 30 DPA in wheat grain development. m6A-seq identified 30,615, 30,326, 27,676 high confidence m6A peaks from the 10DPA, 20DPA, and 30DPA, respectively, and enriched at 3'UTR. There were 29,964, 29,542 and 26,834 unique peaks identified in AN0942_10d, AN0942_20d and AN0942_30d. One hundred and forty-two genes were methylated by m6A throughout seed development, 940 genes methylated in early grain development (AN0942_20d vs AN0942_10d), 1542 genes in late grain development (AN0942_30d vs AN0942_20d), and 1190 genes between early and late development stage (AN0942_30d vs AN0942_10d). KEGG enrichment analysis found that protein-related pathways and the starch synthesis-related pathway were significantly enriched in the later stages of seed development. Our results provide novel knowledge on m6A dynamic changes and its roles in wheat grain development.
Collapse
Affiliation(s)
- Wenxiang Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yi Yu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xuanrong Chen
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qian Fang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Anqi Yang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xinyu Chen
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lei Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chengyu Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
- Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow and Huai River Valley, Ministry of Agriculture, Hefei, 230036, China
| | - Dechuan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Sihong Ye
- Cotton Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, Anhui, China.
| | - Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
| |
Collapse
|
15
|
Begum Y. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 2022; 821:146283. [PMID: 35143944 DOI: 10.1016/j.gene.2022.146283] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
16
|
Zhang J, Mei H, Lu H, Chen R, Hu Y, Zhang T. Transcriptome Time-Course Analysis in the Whole Period of Cotton Fiber Development. FRONTIERS IN PLANT SCIENCE 2022; 13:864529. [PMID: 35463423 PMCID: PMC9022538 DOI: 10.3389/fpls.2022.864529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Gossypium hirsutum and Gossypium barbadense are the widely cultivated tetraploid cottons around the world, which evolved great differences in the fiber yield and quality due to the independent domestication process. To reveal the genetic basis of the difference, we integrated 90 samples from ten time points during the fiber developmental period for investigating the dynamics of gene expression changes associated with fiber in G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124 and acc. 3-79. Globally, 44,484 genes expressed in all three cultivars account for 61.14% of the total genes. About 61.39% (N = 3,412) of the cotton transcription factors were involved in fiber development, which consisted of 58 cotton TF families. The differential analysis of intra- and interspecies showed that 3 DPA had more expression changes. To discover the genes with temporally changed expression profiles during the whole fiber development, 1,850 genes predominantly expressed in G. hirsutum and 1,050 in G. barbadense were identified, respectively. Based on the weighted gene co-expression network and time-course analysis, several candidate genes, mainly involved in the secondary cell wall synthesis and phytohormones, were identified in this study, underlying possibly the transcriptional regulation and molecular mechanisms of the fiber quality differences between G. barbadense and G. hirsutum. The quantitative real-time PCR validation of the candidate genes was consistent with the RNA-seq data. Our study provides a strong rationale for the analysis of gene function and breeding of high-quality cotton.
Collapse
|
17
|
MicroRNA Mediated Plant Responses to Nutrient Stress. Int J Mol Sci 2022; 23:ijms23052562. [PMID: 35269700 PMCID: PMC8910084 DOI: 10.3390/ijms23052562] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/18/2023] Open
Abstract
To complete their life cycles, plants require several minerals that are found in soil. Plant growth and development can be affected by nutrient shortages or high nutrient availability. Several adaptations and evolutionary changes have enabled plants to cope with inappropriate growth conditions and low or high nutrient levels. MicroRNAs (miRNAs) have been recognized for transcript cleavage and translational reduction, and can be used for post-transcriptional regulation. Aside from regulating plant growth and development, miRNAs play a crucial role in regulating plant’s adaptations to adverse environmental conditions. Additionally, miRNAs are involved in plants’ sensory functions, nutrient uptake, long-distance root transport, and physiological functions related to nutrients. It may be possible to develop crops that can be cultivated in soils that are either deficient in nutrients or have extreme nutrient supplies by understanding how plant miRNAs are associated with nutrient stress. In this review, an overview is presented regarding recent advances in the understanding of plants’ responses to nitrogen, phosphorus, potassium, sulfur, copper, iron, boron, magnesium, manganese, zinc, and calcium deficiencies via miRNA regulation. We conclude with future research directions emphasizing the modification of crops for improving future food security.
Collapse
|
18
|
miRNAomic Approach to Plant Nitrogen Starvation. Int J Genomics 2021; 2021:8560323. [PMID: 34796230 PMCID: PMC8595019 DOI: 10.1155/2021/8560323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen (N) is one of the indispensable nutrients required by plants for their growth, development, and survival. Being a limited nutrient, it is mostly supplied exogenously to the plants, to maintain quality and productivity. The increased use of N fertilizers is associated with high-cost inputs and negative environmental consequences, which necessitates the development of nitrogen-use-efficient plants for sustainable agriculture. Understanding the regulatory mechanisms underlying N metabolism in plants under low N is one of the prerequisites for the development of nitrogen-use-efficient plants. One of the important and recently discovered groups of regulatory molecules acting at the posttranscriptional and translational levels are microRNAs (miRNAs). miRNAs are known to play critical roles in the regulation of gene expression in plants under different stress conditions including N stress. Several classes of miRNAs associated with N metabolism have been identified so far. These nitrogen-responsive miRNAs may provide a platform for a better understanding of the regulation of N metabolism and pave a way for the development of genotypes for better N utilization. The current review presents a brief outline of miRNAs and their regulatory role in N metabolism.
Collapse
|
19
|
Wang M, Yang C, Wei K, Zhao M, Shen L, Ji J, Wang L, Zhang D, Guo J, Zheng Y, Yu J, Zhu M, Liu H, Li YF. Temporal expression study of miRNAs in the crown tissues of winter wheat grown under natural growth conditions. BMC Genomics 2021; 22:793. [PMID: 34736408 PMCID: PMC8567549 DOI: 10.1186/s12864-021-08048-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Winter wheat requires prolonged exposure to low temperature to initiate flowering (vernalization). Shoot apical meristem of the crown is the site of cold perception, which produces leaf primordia during vegetative growth before developing into floral primordia at the initiation of the reproductive phase. Although many essential genes for winter wheat cold acclimation and floral initiation have been revealed, the importance of microRNA (miRNA) meditated post-transcriptional regulation in crowns is not well understood. To understand the potential roles of miRNAs in crown tissues, we performed a temporal expression study of miRNAs in crown tissues at the three-leaf stage, winter dormancy stage, spring green-up stage, and jointing stage of winter wheat grown under natural growth conditions. RESULTS In total, 348 miRNAs belonging to 298 miRNA families, were identified in wheat crown tissues. Among them, 92 differentially expressed miRNAs (DEMs) were found to be significantly regulated from the three-leaf stage to the jointing stage. Most of these DEMs were highly expressed at the three-leaf stage and winter dormancy stage, and then declined in later stages. Six DEMs, including miR156a-5p were markedly induced during the winter dormancy stage. Eleven DEMs, including miR159a.1, miR390a-5p, miR393-5p, miR160a-5p, and miR1436, were highly expressed at the green-up stage. Twelve DEMs, such as miR172a-5p, miR394a, miR319b-3p, and miR9676-5p were highly induced at the jointing stage. Moreover, 14 novel target genes of nine wheat or Pooideae-specific miRNAs were verified using RLM-5' RACE assay. Notably, six mTERFs and two Rf1 genes, which are associated with mitochondrial gene expression, were confirmed as targets of three wheat-specific miRNAs. CONCLUSIONS The present study not only confirmed the known miRNAs associated with phase transition and floral development, but also identified a number of wheat or Pooideae-specific miRNAs critical for winter wheat cold acclimation and floral development. Most importantly, this study provided experimental evidence that miRNA could regulate mitochondrial gene expression by targeting mTERF and Rf1 genes. Our study provides valuable information for further exploration of the mechanism of miRNA mediated post-transcriptional regulation during winter wheat vernalization and inflorescent initiation.
Collapse
Affiliation(s)
- Menglei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.,Present address: National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenhui Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Kangning Wei
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Liqiang Shen
- Jindal School of Management, University of Texas at Dallas, 800 W Campbell RD, Richardson, TX, 75080, USA
| | - Jie Ji
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Daijing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Juanjuan Yu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Mo Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Haiying Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China. .,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
20
|
Cai J, Wu Z, Hao Y, Liu Y, Song Z, Chen W, Li X, Zhu X. Small RNAs, Degradome, and Transcriptome Sequencing Provide Insights into Papaya Fruit Ripening Regulated by 1-MCP. Foods 2021; 10:1643. [PMID: 34359513 PMCID: PMC8303378 DOI: 10.3390/foods10071643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
As an inhibitor of ethylene receptors, 1-methylcyclopropene (1-MCP) can delay the ripening of papaya. However, improper 1-MCP treatment will cause a rubbery texture in papaya. Understanding of the underlying mechanism is still lacking. In the present work, a comparative sRNA analysis was conducted after different 1-MCP treatments and identified a total of 213 miRNAs, of which 44 were known miRNAs and 169 were novel miRNAs in papaya. Comprehensive functional enrichment analysis indicated that plant hormone signal pathways play an important role in fruit ripening. Through the comparative analysis of sRNAs and transcriptome sequencing, a total of 11 miRNAs and 12 target genes were associated with the ethylene and auxin signaling pathways. A total of 1741 target genes of miRNAs were identified by degradome sequencing, and nine miRNAs and eight miRNAs were differentially expressed under the ethylene and auxin signaling pathways, respectively. The network regulation diagram of miRNAs and target genes during fruit ripening was drawn. The expression of 11 miRNAs and 12 target genes was verified by RT-qPCR. The target gene verification showed that cpa-miR390a and cpa-miR396 target CpARF19-like and CpERF RAP2-12-like, respectively, affecting the ethylene and auxin signaling pathways and, therefore, papaya ripening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Z.W.); (Y.H.); (Y.L.); (Z.S.); (W.C.); (X.L.)
| |
Collapse
|
21
|
Mehdi SMM, Krishnamoorthy S, Szczesniak MW, Ludwików A. Identification of Novel miRNAs and Their Target Genes in the Response to Abscisic Acid in Arabidopsis. Int J Mol Sci 2021; 22:7153. [PMID: 34281207 PMCID: PMC8268864 DOI: 10.3390/ijms22137153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs are involved in various biological processes, including adaptive responses to abiotic stress. To understand the role of miRNAs in the response to ABA, ABA-responsive miRNAs were identified by small RNA sequencing in wild-type Arabidopsis, as well as in abi1td, mkkk17, and mkkk18 mutants. We identified 10 novel miRNAs in WT after ABA treatment, while in abi1td, mkkk17, and mkkk18 mutants, three, seven, and nine known miRNAs, respectively, were differentially expressed after ABA treatment. One novel miRNA (miRn-8) was differentially expressed in the mkkk17 mutant. Potential target genes of the miRNA panel were identified using psRNATarget. Sequencing results were validated by quantitative RT-PCR of several known and novel miRNAs in all genotypes. Of the predicted targets of novel miRNAs, seven target genes of six novel miRNAs were further validated by 5' RLM-RACE. Gene ontology analyses showed the potential target genes of ABA-responsive known and novel miRNAs to be involved in diverse cellular processes in plants, including development and stomatal movement. These outcomes suggest that a number of the identified miRNAs have crucial roles in plant responses to environmental stress, as well as in plant development, and might have common regulatory roles in the core ABA signaling pathway.
Collapse
Affiliation(s)
- Syed Muhammad Muntazir Mehdi
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| | - Sivakumar Krishnamoorthy
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| | - Michal Wojciech Szczesniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland;
| | - Agnieszka Ludwików
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (S.M.M.M.); (S.K.)
| |
Collapse
|
22
|
Wang S, Qi X, Liu H. microRNA-939 Promotes the Vitality of Human Breast Cancer Cells via Inhibition of E2F1/P73 Signaling. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We assessed miR-939’s role in breast cancer (BC) and its molecular mechanism. PCR was performed to detect miRNA levels. Correlations between miR-939 and patients’ pathological information were analyzed. After transfection of E2F1 plasmid, P73 plasmid, si-E2F1, si-P73, miR-939
mimic or si-miR-939, cell proliferation and apoptosis were measured. The miR-939 target gene was proved by a luciferase assay. Protein and mRNA levels of E2F1 and P73 were detected by immunoblotting and PCR, and corresponding proliferation or apoptosis were assessed. MiR-939 expression was
significantly increased in BC and associated with TNM staging, Ki-67 enhancement, and shorter disease-free survival time. In BC clinical samples, E2F1 expression is negatively correlated with miR-939 expressions. Overexpressing miR-939 stimulated growth but suppressed cell apoptosis. Functional
analysis indicated E2F1 is the target gene of miR-939, and overexpression of miR-939 significantly downregulated E2F1 and P73. Silencing of E2F1 or P73 significantly promoted MDA-MB-231 cell proliferation and inhibited apoptosis. Overexpression of E2F1 plasmid or P73 plasmid significantly
inhibited MDA-MB-231 cell proliferation but induced apoptosis. Transfection of P73 or E2F1 plasmid abolished miR-939’s effects on proliferation and apoptosis. miR-939 promotes breast cancer progression by downregulation of E2F1 to inhibit P73 pathway, thereby promoting proliferation
and inhibiting apoptosis.
Collapse
Affiliation(s)
- Shuaibing Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin’s Clinical Research Center
for Cancer, Tianjin 300060, China
| | - Xiuheng Qi
- HebeiPetroChina Central Hospital, Langfang, Hebei 065000, China
| | - Hong Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin’s Clinical Research Center for Cancer,
Tianjin 300060, China
| |
Collapse
|
23
|
|
24
|
Li H, Meng H, Sun X, Deng J, Shi T, Zhu L, Lv Q, Chen Q. Integrated microRNA and transcriptome profiling reveal key miRNA-mRNA interaction pairs associated with seed development in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2021; 21:132. [PMID: 33750309 PMCID: PMC7941931 DOI: 10.1186/s12870-021-02914-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/01/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.
Collapse
Affiliation(s)
- Hongyou Li
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| | - Hengling Meng
- Key Laboratory of High-Quality Crops Cultivation and Safety Control of Yunnan Province, Honghe University, Honghe, 661100, China
| | - Xiaoqian Sun
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qiuyu Lv
- School of Big Data and Computer Science, Guizhou Normal University, Guiyang, 550025, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
25
|
Kong L, Zhang Y, Du W, Xia H, Fan S, Zhang B. Signaling Responses to N Starvation: Focusing on Wheat and Filling the Putative Gaps With Findings Obtained in Other Plants. A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:656696. [PMID: 34135921 PMCID: PMC8200679 DOI: 10.3389/fpls.2021.656696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 05/16/2023]
Abstract
Wheat is one of the most important food crops worldwide. In recent decades, fertilizers, especially nitrogen (N), have been increasingly utilized to maximize wheat productivity. However, a large proportion of N is not used by plants and is in fact lost into the environment and causes serious environmental pollution. Therefore, achieving a low N optimum via efficient physiological and biochemical processes in wheat grown under low-N conditions is highly important for agricultural sustainability. Although N stress-related N capture in wheat has become a heavily researched subject, how this plant adapts and responds to N starvation has not been fully elucidated. This review summarizes the current knowledge on the signaling mechanisms activated in wheat plants in response to N starvation. Furthermore, we filled the putative gaps on this subject with findings obtained in other plants, primarily rice, maize, and Arabidopsis. Phytohormones have been determined to play essential roles in sensing environmental N starvation and transducing this signal into an adjustment of N transporters and phenotypic adaptation. The critical roles played by protein kinases and critical kinases and phosphatases, such as MAPK and PP2C, as well as the multifaceted functions of transcription factors, such as NF-Y, MYB, DOF, and WRKY, in regulating the expression levels of their target genes (proteins) for low-N tolerance are also discussed. Optimization of root system architecture (RSA) via root branching and thinning, improvement of N acquisition and assimilation, and fine-tuned autophagy are pivotal strategies by which plants respond to N starvation. In light of these findings, we attempted to construct regulatory networks for RSA modification and N uptake, transport, assimilation, and remobilization.
Collapse
Affiliation(s)
- Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wanying Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Bin Zhang,
| |
Collapse
|
26
|
Fukuda M, Fujiwara T, Nishida S. Roles of Non-Coding RNAs in Response to Nitrogen Availability in Plants. Int J Mol Sci 2020; 21:ijms21228508. [PMID: 33198163 PMCID: PMC7696010 DOI: 10.3390/ijms21228508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/06/2023] Open
Abstract
Nitrogen (N) is an essential nutrient for plant growth and development; therefore, N deficiency is a major limiting factor in crop production. Plants have evolved mechanisms to cope with N deficiency, and the role of protein-coding genes in these mechanisms has been well studied. In the last decades, regulatory non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs), and long ncRNAs (lncRNAs), have emerged as important regulators of gene expression in diverse biological processes. Recent advances in technologies for transcriptome analysis have enabled identification of N-responsive ncRNAs on a genome-wide scale. Characterization of these ncRNAs is expected to improve our understanding of the gene regulatory mechanisms of N response. In this review, we highlight recent progress in identification and characterization of N-responsive ncRNAs in Arabidopsis thaliana and several other plant species including maize, rice, and Populus.
Collapse
Affiliation(s)
- Makiha Fukuda
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA;
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Sho Nishida
- Department of Bioresource Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
- Correspondence: ; Tel.: +81-952-28-8720
| |
Collapse
|
27
|
Wang T, Song H, Li P, Wei Y, Hu N, Chen Z, Wang W, Liu J, Zhang B, Peng R. Transcriptome Analysis Provides Insights into Grain Filling in Foxtail Millet ( Setaria italica L.). Int J Mol Sci 2020; 21:ijms21145031. [PMID: 32708737 PMCID: PMC7403974 DOI: 10.3390/ijms21145031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Grain filling is an importantly developmental process which is associated with the yield and quality of foxtail millet (Setaria italic L.). However, the molecular mechanisms of grain filling are rarely reported in foxtail millet. In our study, RNA-seq was performed to investigate the transcriptional dynamics and identify the key genes involved in grain filling in foxtail millet at five different developmental stages. A total of 11,399 differentially expressed genes (DEGs), including 902 transcription factors (TFs), were identified. Certain important genes involved in grain filling were discovered through a function annotation and temporal expression patterns analysis. These genes included genes associated with starch biosynthesis, cell-wall invertases, hormone signal transduction, and polyamine metabolism pathways. The expression levels of seven randomly selected DEGs were validated by a quantitative real-time polymerase chain reaction (qRT-PCR). This study provides the first insight into the changes in the gene expression of grain filling at different developmental stages in foxtail millet. These results could help understand the complex molecular mechanisms of the panicle formation in foxtail millet and other cereal crops.
Collapse
Affiliation(s)
- Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
- Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang 455000, China
| | - Hui Song
- Anyang Academy of Agriculture Sciences, Anyang 455000, China; (H.S.); (J.L.)
| | - Pengtao Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
| | - Yangyang Wei
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
| | - Zhenwen Chen
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
| | - Weiqi Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
| | - Jinrong Liu
- Anyang Academy of Agriculture Sciences, Anyang 455000, China; (H.S.); (J.L.)
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Correspondence: (B.Z.); (R.P.); Tel.: +1-252-328-2021 (B.Z.); +86-372-2909279 (R.P.)
| | - Renhai Peng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (T.W.); (P.L.); (Y.W.); (N.H.); (Z.C.); (W.W.)
- Correspondence: (B.Z.); (R.P.); Tel.: +1-252-328-2021 (B.Z.); +86-372-2909279 (R.P.)
| |
Collapse
|
28
|
Thornburg TE, Liu J, Li Q, Xue H, Wang G, Li L, Fontana JE, Davis KE, Liu W, Zhang B, Zhang Z, Liu M, Pan X. Potassium Deficiency Significantly Affected Plant Growth and Development as Well as microRNA-Mediated Mechanism in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2020; 11:1219. [PMID: 32922417 PMCID: PMC7456879 DOI: 10.3389/fpls.2020.01219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
It is well studied that potassium (K+) deficiency induced aberrant growth and development of plant and altered the expression of protein-coding genes. However, there are not too many systematic investigations on root development affected by K+ deficiency, and there is no report on miRNA expression during K+ deficiency in wheat. In this study, we found that K+ deficiency significantly affected wheat seedling growth and development, evidenced by reduced plant biomass and small plant size. In wheat cultivar AK-58, up-ground shoots were more sensitive to K+ deficiency than roots. K+ deficiency did not significantly affect root vitality but affected root development, including root branching, root area, and root size. K+ deficiency delayed seminal root emergence but enhanced seminal root elongation, total root length, and correspondingly total root surface area. K+ deficiency also affected root and leaf respiration at the early exposure stage, but these effects were not observed at the later stage. One potential mechanism causing K+ deficiency impacts is microRNAs (miRNAs), one important class of small regulatory RNAs. K+ deficiency induced the aberrant expression of miRNAs and their targets, which further affected plant growth, development, and response to abiotic stresses, including K+ deficiency. Thereby, this positive root adaption to K+ deficiency is likely associated with the miRNA-involved regulation of root development.
Collapse
Affiliation(s)
- Thomas Elliott Thornburg
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Jia Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
| | - Qian Li
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
| | - Huiyun Xue
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
| | - Guo Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
| | - Lijie Li
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
| | - Julia Elise Fontana
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kyle E. Davis
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Wanying Liu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Zhiyong Zhang, ; Mingjiu Liu, ; Xiaoping Pan,
| | - Mingjiu Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Zhiyong Zhang, ; Mingjiu Liu, ; Xiaoping Pan,
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC, United States
- *Correspondence: Zhiyong Zhang, ; Mingjiu Liu, ; Xiaoping Pan,
| |
Collapse
|