1
|
Chen B, Zhen L, Yang Z, Liu T, Yang S, Mu W, Xiao X, Chen J. miRNA-mRNA integrated analysis reveals candidate genes associated with salt stress response in Halophytic Sonneratia apetala. RNA Biol 2025; 22:1-13. [PMID: 40296366 PMCID: PMC12045576 DOI: 10.1080/15476286.2025.2496097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/20/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Sonneratia apetala is a pioneering species of mangrove plants, which has evolved various mechanisms to tolerate salt-stress due to their long-term exposure to a salinized environment as compared to the of terrestrial freshwater plants. However, limited attempt has been made to uncover the underlying molecular mechanism of their saline adaptation. Here, we integrated mRNA and microRNA (miRNA) sequencing to identify the genes and pathways that may be involved in salt stress-response in the roots of S. apetala. A comprehensive full‑length transcriptome containing 295,501 high‑quality unigenes was obtained by PacBio sequencing technology. Of these, 6,686 genes exhibited significantly differential accumulation after salt stress treatment (p < 0.001, Q < 0.01). They were mainly implicated in plant signal transduction and diverse metabolic pathways, such as those involving phenylpropanoid biosynthesis, plant-pathogen interaction and protein processing. Also, our results identified the regulatory interaction between miRNA-target counterparts during salt stress. Taken together, we present the first global overview of the transcriptome of S. apetala roots, and identify potentially important genes and pathways associated with salt tolerance for further investigation. This study is expected to deliver novel insights in understanding the regulatory mechanism in S. apetala response to salt stress.
Collapse
Affiliation(s)
- Beibei Chen
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Lishan Zhen
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Zhuanying Yang
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Tingting Liu
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Shaoxia Yang
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Wei Mu
- Guangdong Engineering Technology Research Center of Tropical Crops High Efficient Production, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, PR, China
| | - Xiao Xiao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, PR, China
| | - Jinhui Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, PR, China
| |
Collapse
|
2
|
Liu M, Xu Y, Song Y, Fan D, Li J, Zhang Z, Wang L, He J, Chen C, Ma C. Hierarchical Regulatory Networks Reveal Conserved Drivers of Plant Drought Response at the Cell-Type Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415106. [PMID: 40091436 DOI: 10.1002/advs.202415106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/29/2025] [Indexed: 03/19/2025]
Abstract
Drought is a critical environmental challenge affecting plant growth and productivity. Understanding the regulatory networks governing drought response at the cellular level remains an open question. Here, a comprehensive multi-omics integration framework that combines transcriptomic, proteomic, epigenetic, and network-based analyses to delineate cell-type-specific regulatory networks involved in plant drought response is presented. By analyzing nearly 30 000 multi-omics data samples across species, unique insights are revealed into conserved drought responses and cell-type-specific regulatory dynamics, leveraging novel integrative analytical workflows. Notably, CIPK23 emerges as a conserved protein kinase mediating drought tolerance through interactions with CBL4, as validated by yeast two-hybrid and BiFC assays. Experimental validation in Arabidopsis thaliana and Vitis vinifera confirms the functional conservation of CIPK23, which enhances drought resistance in overexpression lines. In addition, the authors' causal network analysis pinpoints critical regulatory drivers such as NLP7 and CIPK23, providing insights into the molecular mechanisms of drought adaptation. These findings advance understanding of plant drought tolerance and offer potential targets for improving crop resilience across diverse species.
Collapse
Affiliation(s)
- Moyang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongying Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junpeng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lujia Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Xu W, John Martin JJ, Li X, Liu X, Zhang R, Hou M, Cao H, Cheng S. Unveiling the Secrets of Oil Palm Genetics: A Look into Omics Research. Int J Mol Sci 2024; 25:8625. [PMID: 39201312 PMCID: PMC11354864 DOI: 10.3390/ijms25168625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Oil palm is a versatile oil crop with numerous applications. Significant progress has been made in applying histological techniques in oil palm research in recent years. Whole genome sequencing of oil palm has been carried out to explain the function and structure of the order genome, facilitating the development of molecular markers and the construction of genetic maps, which are crucial for studying important traits and genetic resources in oil palm. Transcriptomics provides a powerful tool for studying various aspects of plant biology, including abiotic and biotic stresses, fatty acid composition and accumulation, and sexual reproduction, while proteomics and metabolomics provide opportunities to study lipid synthesis and stress responses, regulate fatty acid composition based on different gene and metabolite levels, elucidate the physiological mechanisms in response to abiotic stresses, and explain intriguing biological processes in oil palm. This paper summarizes the current status of oil palm research from a multi-omics perspective and hopes to provide a reference for further in-depth research on oil palm.
Collapse
Affiliation(s)
- Wen Xu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| | - Jerome Jeyakumar John Martin
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xinyu Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaoyu Liu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Ruimin Zhang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Mingming Hou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Hongxing Cao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (W.X.); (J.J.J.M.); (X.L.); (X.L.); (R.Z.); (M.H.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Shuanghong Cheng
- College of Tropical Crops, Yunnan Agricultural University, Pu’er 665000, China
| |
Collapse
|
4
|
Li Q, Wang Y, Sun Z, Li H, Liu H. The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development. Int J Mol Sci 2024; 25:7680. [PMID: 39062923 PMCID: PMC11276867 DOI: 10.3390/ijms25147680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In the realm of plant biology, small RNAs (sRNAs) are imperative in the orchestration of gene expression, playing pivotal roles across a spectrum of developmental sequences and responses to environmental stressors. The biosynthetic cascade of sRNAs is characterized by an elaborate network of enzymatic pathways that meticulously process double-stranded RNA (dsRNA) precursors into sRNA molecules, typically 20 to 30 nucleotides in length. These sRNAs, chiefly microRNAs (miRNAs) and small interfering RNAs (siRNAs), are integral in guiding the RNA-induced silencing complex (RISC) to selectively target messenger RNAs (mRNAs) for post-transcriptional modulation. This regulation is achieved either through the targeted cleavage or the suppression of translational efficiency of the mRNAs. In plant development, sRNAs are integral to the modulation of key pathways that govern growth patterns, organ differentiation, and developmental timing. The biogenesis of sRNA itself is a fine-tuned process, beginning with transcription and proceeding through a series of processing steps involving Dicer-like enzymes and RNA-binding proteins. Recent advances in the field have illuminated the complex processes underlying the generation and function of small RNAs (sRNAs), including the identification of new sRNA categories and the clarification of their involvement in the intercommunication among diverse regulatory pathways. This review endeavors to evaluate the contemporary comprehension of sRNA biosynthesis and to underscore the pivotal role these molecules play in directing the intricate performance of plant developmental processes.
Collapse
Affiliation(s)
| | | | | | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Q.L.); (Y.W.); (Z.S.)
| |
Collapse
|
5
|
Ferreira TMM, Ferreira Filho JA, Leão AP, de Sousa CAF, Souza MTJ. Structural and functional analysis of stress-inducible genes and their promoters selected from young oil palm ( Elaeis guineensis) under salt stress. BMC Genomics 2022; 23:735. [PMCID: PMC9620643 DOI: 10.1186/s12864-022-08926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Soil salinity is a problem in more than 100 countries across all continents. It is one of the abiotic stress that threatens agriculture the most, negatively affecting crops and reducing productivity. Transcriptomics is a technology applied to characterize the transcriptome in a cell, tissue, or organism at a given time via RNA-Seq, also known as full-transcriptome shotgun sequencing. This technology allows the identification of most genes expressed at a particular stage, and different isoforms are separated and transcript expression levels measured. Once determined by this technology, the expression profile of a gene must undergo validation by another, such as quantitative real-time PCR (qRT-PCR). This study aimed to select, annotate, and validate stress-inducible genes—and their promoters—differentially expressed in the leaves of oil palm (Elaeis guineensis) plants under saline stress. Results The transcriptome analysis led to the selection of 14 genes that underwent structural and functional annotation, besides having their expression validated using the qRT-PCR technique. When compared, the RNA-Seq and qRT-PCR profiles of those genes resulted in some inconsistencies. The structural and functional annotation analysis of proteins coded by the selected genes showed that some of them are orthologs of genes reported as conferring resistance to salinity in other species. There were those coding for proteins related to the transport of salt into and out of cells, transcriptional regulatory activity, and opening and closing of stomata. The annotation analysis performed on the promoter sequence revealed 22 distinct types of cis-acting elements, and 14 of them are known to be involved in abiotic stress. Conclusion This study has helped validate the process of an accurate selection of genes responsive to salt stress with a specific and predefined expression profile and their promoter sequence. Its results also can be used in molecular-genetics-assisted breeding programs. In addition, using the identified genes is a window of opportunity for strategies trying to relieve the damages arising from the salt stress in many glycophyte crops with economic importance.
Collapse
Affiliation(s)
- Thalita Massaro Malheiros Ferreira
- grid.411269.90000 0000 8816 9513Graduate Program of Plant Biotechnology, Federal University of Lavras, 37200-000 Lavras, MG CP 3037, Brazil
| | - Jaire Alves Ferreira Filho
- grid.460200.00000 0004 0541 873XBrazilian Agricultural Research Corporation, Embrapa Agroenergy, 70770-901 Brasília, DF Brazil
| | - André Pereira Leão
- grid.460200.00000 0004 0541 873XBrazilian Agricultural Research Corporation, Embrapa Agroenergy, 70770-901 Brasília, DF Brazil
| | | | - Manoel Teixeira Jr. Souza
- grid.411269.90000 0000 8816 9513Graduate Program of Plant Biotechnology, Federal University of Lavras, 37200-000 Lavras, MG CP 3037, Brazil ,grid.460200.00000 0004 0541 873XBrazilian Agricultural Research Corporation, Embrapa Agroenergy, 70770-901 Brasília, DF Brazil
| |
Collapse
|
6
|
Leão AP, Bittencourt CB, Carvalho da Silva TL, Rodrigues Neto JC, Braga ÍDO, Vieira LR, de Aquino Ribeiro JA, Abdelnur PV, de Sousa CAF, Souza Júnior MT. Insights from a Multi-Omics Integration (MOI) Study in Oil Palm ( Elaeis guineensis Jacq.) Response to Abiotic Stresses: Part Two-Drought. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202786. [PMID: 36297811 PMCID: PMC9611107 DOI: 10.3390/plants11202786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/09/2023]
Abstract
Drought and salinity are two of the most severe abiotic stresses affecting agriculture worldwide and bear some similarities regarding the responses of plants to them. The first is also known as osmotic stress and shows similarities mainly with the osmotic effect, the first phase of salinity stress. Multi-Omics Integration (MOI) offers a new opportunity for the non-trivial challenge of unraveling the mechanisms behind multigenic traits, such as drought and salinity resistance. The current study carried out a comprehensive, large-scale, single-omics analysis (SOA) and MOI studies on the leaves of young oil palm plants submitted to water deprivation. After performing SOA, 1955 DE enzymes from transcriptomics analysis, 131 DE enzymes from proteomics analysis, and 269 DE metabolites underwent MOI analysis, revealing several pathways affected by this stress, with at least one DE molecule in all three omics platforms used. Moreover, the similarities and dissimilarities in the molecular response of those plants to those two abiotic stresses underwent mapping. Cysteine and methionine metabolism (map00270) was the most affected pathway in all scenarios evaluated. The correlation analysis revealed that 91.55% of those enzymes expressed under both stresses had similar qualitative profiles, corroborating the already known fact that plant responses to drought and salinity show several similarities. At last, the results shed light on some candidate genes for engineering crop species resilient to both abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | - Ítalo de Oliveira Braga
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - Letícia Rios Vieira
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | | | | | | | - Manoel Teixeira Souza Júnior
- Embrapa Agroenergia, Brasília 70770-901, DF, Brazil
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| |
Collapse
|
7
|
Salgado FF, da Silva TLC, Vieira LR, Silva VNB, Leão AP, Costa MMDC, Togawa RC, de Sousa CAF, Grynberg P, Souza MT. The early response of oil palm ( Elaeis guineensis Jacq.) plants to water deprivation: Expression analysis of miRNAs and their putative target genes, and similarities with the response to salinity stress. FRONTIERS IN PLANT SCIENCE 2022; 13:970113. [PMID: 36212369 PMCID: PMC9539919 DOI: 10.3389/fpls.2022.970113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/25/2022] [Indexed: 06/09/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is a oilseed crop of great economic importance drastically affected by abiotic stresses. MicroRNAs (miRNAs) play crucial roles in transcription and post-transcription regulation of gene expression, being essential molecules in the response of plants to abiotic stress. To better understand the molecular mechanisms behind the response of young oil palm plants to drought stress, this study reports on the prediction and characterization of miRNAs and their putative target genes in the apical leaf of plants subjected to 14 days of water deprivation. Then, the data from this study were compared to the data from a similar study that focused on salinity stress. Both, the drought-and salt-responsive miRNAs and their putative target genes underwent correlation analysis to identify similarities and dissimilarities among them. Among the 81 identified miRNAs, 29 are specific for oil palm, including two (egu-miR28ds and egu-miR29ds) new ones - described for the first time. As for the expression profile, 62 miRNAs were significantly differentially expressed under drought stress, being five up-regulated (miR396e, miR159b, miR529b, egu-miR19sds, and egu-miR29ds) and 57 down-regulated. Transcription factors, such as MYBs, HOXs, and NF-Ys, were predicted as putative miRNA-target genes in oil palm under water deprivation; making them the most predominant group of such genes. Finally, the correlation analysis study revealed a group of putative target genes with similar behavior under salt and drought stresses. Those genes that are upregulated by these two abiotic stresses encode lncRNAs and proteins linked to stress tolerance, stress memory, modulation of ROS signaling, and defense response regulation to abiotic and biotic stresses. In summary, this study provides molecular evidence for the possible involvement of miRNAs in the drought stress response in oil palm. Besides, it shows that, at the molecular level, there are many similarities in the response of young oil palm plants to these two abiotic stresses.
Collapse
Affiliation(s)
| | | | - Letícia Rios Vieira
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras, MG, Brazil
| | | | - André Pereira Leão
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF, Brazil
| | - Marcos Mota do Carmo Costa
- The Brazilian Agricultural Research Corporation, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Roberto Coiti Togawa
- The Brazilian Agricultural Research Corporation, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | | | - Priscila Grynberg
- The Brazilian Agricultural Research Corporation, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Manoel Teixeira Souza
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras, MG, Brazil
- The Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF, Brazil
| |
Collapse
|
8
|
Chen B, Ding Z, Zhou X, Wang Y, Huang F, Sun J, Chen J, Han W. Integrated Full-Length Transcriptome and MicroRNA Sequencing Approaches Provide Insights Into Salt Tolerance in Mangrove ( Sonneratia apetala Buch.-Ham.). Front Genet 2022; 13:932832. [PMID: 35899202 PMCID: PMC9310009 DOI: 10.3389/fgene.2022.932832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that serve as key players in plant stress responses. Although stress-regulated miRNAs have been explored in various plants, they are not well studied in mangroves. Herein, we combined PacBio isoform sequencing (Iso-Seq) with BGISEQ short-read RNA-seq to probe the role of miRNAs in the salt stress response of the mangrove plant, Sonneratia apetala Buch.-Ham. A total of 1,702,463 circular consensus sequencing reads were generated that produced 295,501 nonredundant full-length transcripts from the leaves of a 1-year-old S. apetala. After sequencing nine small RNA libraries constructed from control and 1- and 28-day 300 mM NaCl treatments, we identified 143 miRNAs (114 known and 29 novel) from a total of >261 million short reads. With the criteria of |log2FC| ≥ 1 and q-value < 0.05, 42 and 70 miRNAs were differentially accumulated after 1- and 28-day salt treatments, respectively. These differential accumulated miRNAs potentially targeted salt-responsive genes encoding transcription factors, ion homeostasis, osmotic protection, and detoxificant-related proteins, reminiscent of their responsibility for salinity adaptation in S. apetala. Particularly, 62 miRNAs were Sonneratia specific under salt stress, of which 34 were co-expressed with their 131 predicted targets, thus producing 140 miRNA-target interactions. Of these, 82 miRNA-target pairs exhibited negative correlations. Eighteen miRNA targets were categorized for the 'environmental information processing' during KEGG analysis and were related to plant hormone signal transduction (ko04075), MAPK signaling pathway-plant (ko04016), and ABC transporters (ko02010). These results underscored miRNAs as possible contributors to mangrove success in severe environments and offer insights into an miRNA-mediated regulatory mechanism of salt response in S. apetala.
Collapse
Affiliation(s)
- Beibei Chen
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Zeyi Ding
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Xiang Zhou
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Yue Wang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Fei Huang
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Jiaxin Sun
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| | - Jinhui Chen
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Weidong Han
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
9
|
Bittencourt CB, Carvalho da Silva TL, Rodrigues Neto JC, Vieira LR, Leão AP, de Aquino Ribeiro JA, Abdelnur PV, de Sousa CAF, Souza MT. Insights from a Multi-Omics Integration (MOI) Study in Oil Palm (Elaeis guineensis Jacq.) Response to Abiotic Stresses: Part One—Salinity. PLANTS 2022; 11:plants11131755. [PMID: 35807707 PMCID: PMC9269341 DOI: 10.3390/plants11131755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
Oil palm (Elaeis guineensis Jacq.) is the number one source of consumed vegetable oil nowadays. It is cultivated in areas of tropical rainforest, where it meets its natural condition of high rainfall throughout the year. The palm oil industry faces criticism due to a series of practices that was considered not environmentally sustainable, and it finds itself under pressure to adopt new and innovative procedures to reverse this negative public perception. Cultivating this oilseed crop outside the rainforest zone is only possible using artificial irrigation. Close to 30% of the world’s irrigated agricultural lands also face problems due to salinity stress. Consequently, the research community must consider drought and salinity together when studying to empower breeding programs in order to develop superior genotypes adapted to those potential new areas for oil palm cultivation. Multi-Omics Integration (MOI) offers a new window of opportunity for the non-trivial challenge of unraveling the mechanisms behind multigenic traits, such as drought and salinity tolerance. The current study carried out a comprehensive, large-scale, single-omics analysis (SOA), and MOI study on the leaves of young oil palm plants submitted to very high salinity stress. Taken together, a total of 1239 proteins were positively regulated, and 1660 were negatively regulated in transcriptomics and proteomics analyses. Meanwhile, the metabolomics analysis revealed 37 metabolites that were upregulated and 92 that were downregulated. After performing SOA, 436 differentially expressed (DE) full-length transcripts, 74 DE proteins, and 19 DE metabolites underwent MOI analysis, revealing several pathways affected by this stress, with at least one DE molecule in all three omics platforms used. The Cysteine and methionine metabolism (map00270) and Glycolysis/Gluconeogenesis (map00010) pathways were the most affected ones, each one with 20 DE molecules.
Collapse
Affiliation(s)
- Cleiton Barroso Bittencourt
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, Brazil; (C.B.B.); (T.L.C.d.S.); (L.R.V.)
| | - Thalliton Luiz Carvalho da Silva
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, Brazil; (C.B.B.); (T.L.C.d.S.); (L.R.V.)
| | | | - Letícia Rios Vieira
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, Brazil; (C.B.B.); (T.L.C.d.S.); (L.R.V.)
| | - André Pereira Leão
- Embrapa Agroenergia, Brasília 70770-901, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (P.V.A.)
| | | | | | | | - Manoel Teixeira Souza
- Graduate Program of Plant Biotechnology, Federal University of Lavras, Lavras 37200-000, Brazil; (C.B.B.); (T.L.C.d.S.); (L.R.V.)
- Embrapa Agroenergia, Brasília 70770-901, Brazil; (J.C.R.N.); (A.P.L.); (J.A.d.A.R.); (P.V.A.)
- Correspondence: ; Tel.: +55-61-3448-3210
| |
Collapse
|