1
|
Yu Z, Hu B, Ning H, Li WX. Detection of genes associated with soybean protein content using a genome-wide association study. PLANT MOLECULAR BIOLOGY 2025; 115:49. [PMID: 40119995 DOI: 10.1007/s11103-025-01576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
The protein content in soybean seeds serves as a crucial measure of soybean quality. Breeding high-protein varieties remains the most cost-effective and efficient approach to increasing soybean protein levels. Nevertheless, limited research has focused on identifying the genes responsible for high protein content among the diverse soybean cultivars. To address this gap, a genome-wide association study (GWAS) was conducted on 455 soybean varieties with varying protein content to predict and validate novel genes involved in regulating protein levels in soybean seeds. Protein content data were obtained from three distinct environments, along with three environmental variables derived from oil content, which is closely related to protein levels. Genotyping was performed using the SoySNP180k BeadChip, yielding genotype data for 63,306 non-redundant single nucleotide polymorphisms (SNPs). Five multi-locus GWAS methods were employed, resulting in the identification of 81 significant quantitative trait nucleotides (QTNs), of which 37 QTNs detected across different methods and environments were further analyzed. Moreover, the simulation platform Blib was used to conduct single-crossing simulation breeding on 81 QTN loci for actual breeding prediction. Haplotype analysis based on re-sequencing data confirmed 2 genes closely linked to protein synthesis, providing a theoretical basis for breeding high-protein soybean varieties and developing molecular breeding strategies.
Collapse
Affiliation(s)
- Zhiyuan Yu
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Bo Hu
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hailong Ning
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China.
| | - Wen-Xia Li
- Key Laboratory of Soybean Biology, Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
2
|
Oder G, Yuceer S, Can C, Tanyolac MB, Ates D. Genome-wide association study for resistance to Macrophomina phaseolina in maize (Zea mays L.). Sci Rep 2025; 15:7794. [PMID: 40044735 PMCID: PMC11882914 DOI: 10.1038/s41598-025-87798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
Maize (Zea mays L.) is a frequently used food source in human and animal nutrition. Macrophomina phaseolina is a fungal pathogen causing charcoal rot disease in many plants, especially maize. This pathogen causes high yield losses in maize. The development of resistant maize genotypes is of great importance in controlling this disease. In this study, the population structure of 120 different maize genotypes with varying levels of disease resistance was determined and genome-wide association studies were performed. Each genotype was subjected to the pathogen under controlled conditions and their phenotypic responses to the disease were analyzed. Afterwards, single nucleotide polymorphisms were determined by DArT-seq sequencing. After filtering the SNP data, 37,470 clean SNPs were obtained. The population structure was analyzed with STRUCTURE software, and it was determined that the population was divided into two subgroups. The relationship between phenotypic and genotypic data was analyzed using the MLM (Q + K) model in TASSEL software. As a result, seven SNPs markers located on four different chromosomes were associated with disease resistance. The related markers can be used in the future for the development of maize varieties resistant to M. phaseolina by marker-assisted selection.
Collapse
Affiliation(s)
- Gizem Oder
- Department of Bioengineering, Ege University, Izmir, Turkey
| | - Semiha Yuceer
- Phytopathology Department, Biological Control Research Institute, Adana, Turkey
| | - Canan Can
- Department of Biology, Gaziantep University, Gaziantep, Turkey
| | | | - Duygu Ates
- Department of Bioengineering, Ege University, Izmir, Turkey.
| |
Collapse
|
3
|
Ma X, Yang G, Zhang J, Ma R, Shen J, Feng F, Yu D, Huang C, Ma X, La Y, Wu X, Guo X, Chu M, Yan P, Liang C. Association between Single Nucleotide Polymorphisms of PRKD1 and KCNQ3 Gene and Milk Quality Traits in Gannan Yak ( Bos grunniens). Foods 2024; 13:781. [PMID: 38472894 DOI: 10.3390/foods13050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Protein kinase D1 (PRKD1) functions primarily in normal mammary cells, and the potassium voltage-gated channel subfamily Q member 3 (KCNQ3) gene plays an important role in controlling membrane potential and neuronal excitability, it has been found that this particular gene is linked to the percentage of milk fat in dairy cows. The purpose of this study was to investigate the relationship between nucleotide polymorphisms (SNPs) of PRKD1 and KCNQ3 genes and the milk quality of Gannan yak and to find molecular marker sites that may be used for milk quality breeding of Gannan yak. Three new SNPs were detected in the PRKD1 (g.283,619T>C, g.283,659C>A) and KCNQ3 gene (g.133,741T>C) of 172 Gannan lactating female yaks by Illumina yak cGPS 7K liquid-phase microarray technology. Milk composition was analyzed using a MilkoScanTM milk composition analyzer. We found that the mutations of these three loci significantly improved the lactose, milk fat, casein, protein, non-fat milk solid (SNF) content and acidity of Gannan yaks. The lactose content of the TC heterozygous genotype population at g.283,619T>C locus was significantly higher than that of the TT wild-type population (p < 0.05); the milk fat content of the CA heterozygous genotype population at g.283,659C>A locus was significantly higher than that of the CC wild-type and AA mutant populations (p < 0.05); the casein, protein and acidity of the CC mutant and TC heterozygous groups at the g.133,741T>C locus were significantly higher than those of the wild type (p < 0.05), and the SNF of the TC heterozygous group was significantly higher than that of the mutant group (p < 0.05). The results showed that PRKD1 and KCNQ3 genes could be used as candidate genes affecting the milk traits of Gannan yak.
Collapse
Affiliation(s)
- Xiaoyong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Guowu Yang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Juanxiang Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Rong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jinwei Shen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Fen Feng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Daoning Yu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
4
|
Yang G, Zhang J, Ma X, Ma R, Shen J, Liu M, Yu D, Feng F, Huang C, Ma X, La Y, Guo X, Yan P, Liang C. Polymorphisms of CCSER1 Gene and Their Correlation with Milk Quality Traits in Gannan Yak ( Bos grunniens). Foods 2023; 12:4318. [PMID: 38231770 DOI: 10.3390/foods12234318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Coiled-coil serine-rich protein 1 (CCSER 1) gene is a regulatory protein gene. This gene has been reported to be associated with various economic traits in large mammals in recent years. The aim of this study was to investigate the association between CCSER1 gene single nucleotide polymorphisms (SNPs) and Gannan yaks and to identify potential molecular marker loci for breeding milk quality in Gannan yaks. We genotyped 172 Gannan yaks using Illumina Yak cGPS 7K liquid microarrays and analyzed the correlation between the three SNPs loci of the CCSER1 gene and the milk qualities of Gannan yaks, including milk fat, protein and casein. It was found that mutations at the g.183,843A>G, g.222,717C>G and g.388,723G>T loci all affected the fat, protein, casein and lactose traits of Gannan yak milk to varying extents, and that the milk quality of individuals with mutant phenotypes was significantly improved. Among them, the milk fat content of AG heterozygous genotype population at g.183,843A>G locus was significantly higher than that of AA and GG genotype populations (p < 0.05); the casein and protein content of mutant GG and CG genotype populations at g.222,717C>G locus was significantly higher than that of wild-type CC genotype population (p < 0.05); and the g.388,723G>T locus of the casein and protein contents of the mutant TT genotype population were significantly higher (p < 0.05) than those of the wild-type GG genotype population. These results provide potential molecular marker sites for Gannan yak breeding.
Collapse
Affiliation(s)
- Guowu Yang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730106, China
| | - Juanxiang Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Rong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jinwei Shen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Modian Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Daoning Yu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730106, China
| | - Fen Feng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
5
|
Duan H, Xue Z, Ju X, Yang L, Gao J, Sun L, Xu S, Li J, Xiong X, Sun Y, Wang Y, Zhang X, Ding D, Zhang X, Tang J. The genetic architecture of prolificacy in maize revealed by association mapping and bulk segregant analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:182. [PMID: 37555969 DOI: 10.1007/s00122-023-04434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023]
Abstract
KEY MESSAGE Here, we revealed maize prolificacy highly correlated with domestication and identified a causal gene ZmEN1 located in one novel QTL qGEN261 that regulating maize prolificacy by using multiple-mapping methods. The development of maize prolificacy (EN) is crucial for enhancing yield and breeding specialty varieties. To achieve this goal, we employed a genome-wide association study (GWAS) to analyze the genetic architecture of EN in maize. Using 492 inbred lines with a wide range of EN variability, our results demonstrated significant differences in genetic, environmental, and interaction effects. The broad-sense heritability (H2) of EN was 0.60. Through GWAS, we identified 527 significant single nucleotide polymorphisms (SNPs), involved 290 quantitative trait loci (QTL) and 806 genes. Of these SNPs, 18 and 509 were classified as major effect loci and minor loci, respectively. In addition, we performed a bulk segregant analysis (BSA) in an F2 population constructed by a few-ears line Zheng58 and a multi-ears line 647. Our BSA results identified one significant QTL, qBEN1. Importantly, combining the GWAS and BSA, four co-located QTL, involving six genes, were identified. Three of them were expressed in vegetative meristem, shoot tip, internode and tip of ear primordium, with ZmEN1, encodes an unknown auxin-like protein, having the highest expression level in these tissues. It suggested that ZmEN1 plays a crucial role in promoting axillary bud and tillering to encourage the formation of prolificacy. Haplotype analysis of ZmEN1 revealed significant differences between different haplotypes, with inbred lines carrying hap6 having more EN. Overall, this is the first report about using GWAS and BSA to dissect the genetic architecture of EN in maize, which can be valuable for breeding specialty maize varieties and improving maize yield.
Collapse
Affiliation(s)
- Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Zhengjie Xue
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Xiaolong Ju
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Lu Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, People's Republic of China
| | - Jionghao Gao
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Li Sun
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Shuhao Xu
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Jianxin Li
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Xuehang Xiong
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yan Sun
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Yan Wang
- Zhucheng Mingjue Tender Company Limited, Weifang, People's Republic of China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, People's Republic of China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, Department of Agronomy, College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- The Shennong Laboratory, Zhengzhou, People's Republic of China.
| |
Collapse
|