1
|
Potential Roles of Soil Microorganisms in Regulating the Effect of Soil Nutrient Heterogeneity on Plant Performance. Microorganisms 2022; 10:microorganisms10122399. [PMID: 36557652 PMCID: PMC9786772 DOI: 10.3390/microorganisms10122399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The spatially heterogeneous distribution of soil nutrients is ubiquitous in terrestrial ecosystems and has been shown to promote the performance of plant communities, influence species coexistence, and alter ecosystem nutrient dynamics. Plants interact with diverse soil microbial communities that lead to an interdependent relationship (e.g., symbioses), driving plant community productivity, belowground biodiversity, and soil functioning. However, the potential role of the soil microbial communities in regulating the effect of soil nutrient heterogeneity on plant growth has been little studied. Here, we highlight the ecological importance of soil nutrient heterogeneity and microorganisms and discuss plant nutrient acquisition mechanisms in heterogeneous soil. We also examine the evolutionary advantages of nutrient acquisition via the soil microorganisms in a heterogeneous environment. Lastly, we highlight a three-way interaction among the plants, soil nutrient heterogeneity, and soil microorganisms and propose areas for future research priorities. By clarifying the role of soil microorganisms in shaping the effect of soil nutrient heterogeneity on plant performance, the present study enhances the current understanding of ecosystem nutrient dynamics in the context of patchily distributed soil nutrients.
Collapse
|
2
|
Shen K, He Y, Xu X, Umer M, Liu X, Xia T, Guo Y, Wu B, Xu H, Zang L, Gao L, Jiao M, Yang X, Yan J. Effects of AMF on plant nutrition and growth depend on substrate gravel content and patchiness in the karst species Bidens pilosa L. FRONTIERS IN PLANT SCIENCE 2022; 13:968719. [PMID: 36247600 PMCID: PMC9557229 DOI: 10.3389/fpls.2022.968719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Karst ecosystems represent a typical heterogeneous habitat, and it is ubiquitous with varying interactive patches of rock and soil associated with differential weathering patterns of carbonate rocks. Arbuscular mycorrhizae fungi (AMF) play an important role in regulating plant growth and nutrition in heterogeneous karst habitats. However, it remains unclear how AMF affects the growth and nutrition of plants in heterogeneous karst soil with varying patches and weathering gravel. A heterogeneous experiment with Bidens pilosa L. was conducted in a grid microcosm through patching karst soil with different gravel contents. The experimental treatments included the AMF treatments inoculated with (M+) or without (M-) fungus Glomus etunicatum; the substrate patchiness treatments involved different sizes of the homogeneous patch (Homo), the heterogeneous large patch (Hetl), and the heterogeneous small patch (Hets); the substrate gravel treatments in the inner patch involved the free gravel (FG), the low gravel (LG) 20% in 80% soil, and the high gravel (HG) 40% in 60% soil. Plant traits related to growth and nutrients were analyzed by comparing substrate gravel content and patch size. The results showed that AMF was more beneficial in increasing the aboveground biomass of B. pilosa under the LG and HG substrates with a higher root mycorrhizal colonization rate than under the FG substrate with a lower root mycorrhizal colonization rate. AMF enhanced higher growth and nutrients for B. pilosa under the LG and HG substrates than under the FG substrate and under the Hets than under the Hetl. Moreover, AMF alleviated the limited supply of N for B. pilosa under all heterogeneous treatments. Furthermore, the response ratio LnRR of B. pilosa presented that the substrate gravel promoted the highest growth, N and P absorption than the substrate patchiness with M+ treatment, and the gravel content had a more effect on plant growth and nutrition as compared to the patch size. Overall, this study suggests that plant growth and nutrition regulated by AMF mainly depend on the substrate gravel content rather than the spatial patchiness in the heterogeneous karst habitat.
Collapse
Affiliation(s)
- Kaiping Shen
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Yuejun He
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Xinyang Xu
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Muhammad Umer
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Xiao Liu
- Forestry Survey and Planning Institute of Guizhou Province, Guiyang, China
| | - Tingting Xia
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Yun Guo
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, China
| | - Bangli Wu
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Han Xu
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Lipeng Zang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Lu Gao
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Min Jiao
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Xionggui Yang
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| | - Jiawei Yan
- Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang, China
| |
Collapse
|