1
|
Zhang J, Zhang W, Ding C, Zhao J, Su X, Yuan Z, Chu Y, Huang Q, Su X. Non-Additive Gene Expression in Carbon and Nitrogen Metabolism Drives Growth Heterosis in Populus deltoides. PLANT, CELL & ENVIRONMENT 2025; 48:3529-3543. [PMID: 39789702 PMCID: PMC11963483 DOI: 10.1111/pce.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Growth heterosis is crucial for Populus deltoides breeding, a key industrial-timber and ecological-construction tree species in temperate regions. However, the molecular mechanisms underlying carbon (C)-nitrogen (N) metabolism coordination in regulating growth heterosis remain unclear. Herein high-hybrids of P. deltoides exhibited high-parent heterosis and mid-parent heterosis in growth traits and key enzymes of C-N metabolism. In hybrids, gene expression patterns were mainly biased toward female parent. Parental contribution to growth heterosis in P. deltoides is differentiation, rather than absolute maternal or paternal dominance contributions. Parental genes were predominantly and dynamically inherited in a non-additive manner, mainly with dominant expression patterns. A total of 44 non-additive genes associated with photosynthetic C fixation, starch and sucrose metabolism, sucrose transport, photorespiration, and nitrogen metabolism coregulated growth heterosis by coordinating C-N metabolism. Growth-regulating factors 4 interacted with DELLA genes to promote growth by enhancing this coordination. Additionally, five critical genes were identified. Briefly, the above genes in high-hybrids improved photosynthesis and N utilisation by regulating carbohydrate accumulation and enzyme activity, while reducing respiratory energy consumption, thereby providing more energy for growth and promoting growth heterosis. Our findings offer new insights and theoretical basis for deep understanding genetic and molecular regulation mechanisms of tree heterosis and its application in precision hybrid breeding.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | | | - Xuehui Su
- Jiaozuo Academy of Agriculture and Forestry SciencesJiaozuoChina
| | - Zhengsai Yuan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Yanguang Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
2
|
Ren Y, Wu L, Zhong Y, Zhao X, Xu M, Wang J. Transcriptome Analysis Revealed the Paternal Importance to Vegetative Growth Heterosis in Populus. PLANTS (BASEL, SWITZERLAND) 2024; 13:2278. [PMID: 39204714 PMCID: PMC11359908 DOI: 10.3390/plants13162278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Parental selection is important for heterosis formation during crossbreeding of Populus. However, in poplar hybrids, the effect of parents on vegetative growth heterosis is not well understood. In this study, one female parent (P. simonii XY4) and two male parents (P. nigra OH and P. deltoides × P. nigra BJLY3#) were used to produce two progenies (Hyb1 and Hyb2). Vegetative growth investigation showed that both Hyb1 and Hyb2 performed heterosis in plant growth and ground diameter. The vegetative growth of hybrids was strongly correlated with the male parents but not with the female parents. The gene expression levels in the hybrids were more biased toward the male parents. In Hyb1 and Hyb2, 51.93% and 45.03% of the expressed genes showed the non-additive effect, respectively, and over 65% of the non-additively expressed genes showed the dominant effect. It is noteworthy that genes of paternal expression dominant effect (ELD_♂) account for the majority of dominantly expressed genes, suggesting the paternal contribution to heterosis. KEGG enrichment analysis indicated that a large number of non-additively expressed genes were enriched in the plant hormone signal transduction pathway. WGCNA analysis showed that MEcyan was significantly correlated with the traits of hybrids, and 12 plant hormone signal transduction pathway genes were enriched in this module. Transcription factors (TFs) MYB88, LHY, and TCP4 may be involved in the regulation of these pathway genes. This finding supported that the male parents play an important role in the formation of vegetative growth heterosis of Populus. In addition, the non-additively expressed genes of the signal transduction pathway and the regulation of TFs related to these pathway genes may be one of the reasons for the generation of heterosis.
Collapse
Affiliation(s)
- Yuxin Ren
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lixia Wu
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuhang Zhong
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xinwen Zhao
- Liaoning Provincial Institute of Poplar, Gaizhou 115213, China
| | - Meng Xu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Wang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; (Y.R.)
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Zhao R, Li Y, Xu C, Zhang Z, Zhou Z, Zhou Y, Qi Z. Expression of heterosis in photosynthetic traits in F1 generation of sorghum ( Sorghum bicolor) hybrids and relationship with yield traits. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24135. [PMID: 39190770 DOI: 10.1071/fp24135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Heterosis is a crucial factor in enhancing crop yield, particularly in sorghum (Sorghum bicolor ). This research utilised six sorghum restorer lines, six sorghum sterile lines, and 36 hybrid combinations created through the NCII incomplete double-row hybridisation method. We evaluated the performance of F1 generation hybrids for leaf photosynthesis-related parameters, carbon metabolism-related enzymes, and their correlation with yield traits during the flowering stage. Results showed that hybrid sorghum exhibited significant high-parent heterosis in net photosynthetic rate (P n ), transpiration rate (T r ), stomatal conductance (G s ), apparent leaf meat conductance (AMC), ribulose-1,5-bisphosphate (RuBP) carboxylase, phosphoenolpyruvate (PEP) carboxylase, and sucrose phosphate synthase (SPS). Conversely, inter-cellular carbon dioxide concentration (C i ), instantaneous water uses efficiency (WUE), and sucrose synthase (SuSy) displayed mostly negative heterosis. Traits such as 1000-grain weight (TGW), grain weight per spike (GWPS), and dry matter content (DMC) exhibited significant high-parent heterosis, with TGW reaching the highest value of 82.54%. P n demonstrated positive correlations with T r , C i , G s , RuBP carboxylase, PEP carboxylase, GWPS, TGW, and DMC, suggesting that T r , C i , and G s could aid in identifying high-photosynthesis sorghum varieties. Concurrently, P n could help select carbon-efficient sorghum varieties due to its close relationship with yield. Overall, the F1 generation of sorghum hybrids displayed notable heterosis during anthesis. Combined with field performance, P n at athesis can serve as a valuable indicator for early prediction of the yield potential of the F1 generation of sorghum hybrids and for screening carbon-efficient sorghum varieties.
Collapse
Affiliation(s)
- Renjie Zhao
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| | - Yueqiao Li
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Chen Xu
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Zhian Zhang
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| | - Ziyang Zhou
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yihan Zhou
- Jilin Engineering Vocational College, Siping 136001, China
| | - Zexin Qi
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Lu A, Zeng S, Pi K, Long B, Mo Z, Liu R. Transcriptome analysis reveals the key role of overdominant expression of photosynthetic and respiration-related genes in the formation of tobacco(Nicotiana tabacum L.) biomass heterosis. BMC Genomics 2024; 25:598. [PMID: 38877410 PMCID: PMC11177473 DOI: 10.1186/s12864-024-10507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Leaves are the nutritional and economic organs of tobacco, and their biomass directly affects tobacco yield and the economic benefits of farmers. In the early stage, our research found that tobacco hybrids have more leaves and larger leaf areas, but the performance and formation reasons of biomass heterosis are not yet clear. RESULTS This study selected 5 parents with significant differences in tobacco biomass and paired them with hybrid varieties. It was found that tobacco hybrid varieties have a common biomass heterosis, and 45 days after transplantation is the key period for the formation of tobacco biomass heterosis; By analyzing the biomass heterosis of hybrids, Va116×GDH94 and its parents were selected for transcriptome analysis. 76.69% of the differentially expressed genes between Va116×GDH94 and its parents showed overdominant expression pattern, and these overdominant expression genes were significantly enriched in the biological processes of photosynthesis and TCA cycle; During the process of photosynthesis, the overdominant up-regulation of genes such as Lhc, Psa, and rbcl promotes the progress of photosynthesis, thereby increasing the accumulation of tobacco biomass; During the respiratory process, genes such as MDH, ACO, and OGDH are overedominantly down-regulated, inhibiting the TCA cycle and reducing substrate consumption in hybrid offspring; The photosynthetic characteristics of the hybrid and its parents were measured, and the net photosynthetic capacity of the hybrid was significantly higher than that of the parents. CONCLUSION These results indicate that the overdominant expression effect of differentially expressed genes in Va116×GDH94 and its parents plays a crucial role in the formation of tobacco biomass heterosis. The overdominant expression of genes related to photosynthesis and respiration enhances the photosynthetic ability of Va116×GDH94, reduces respiratory consumption, promotes the increase of biomass, and exhibits obvious heterosis.
Collapse
Affiliation(s)
- Anbin Lu
- College of Tobacco Science, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Shuaibo Zeng
- College of Tobacco Science, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Kai Pi
- College of Tobacco Science, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Benshan Long
- College of Tobacco Science, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Renxiang Liu
- College of Tobacco Science, Guizhou University, Guiyang, China.
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China.
| |
Collapse
|
5
|
Ren X, Chen L, Deng L, Zhao Q, Yao D, Li X, Cong W, Zang Z, Zhao D, Zhang M, Yang S, Zhang J. Comparative transcriptomic analysis reveals the molecular mechanism underlying seedling heterosis and its relationship with hybrid contemporary seeds DNA methylation in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1364284. [PMID: 38444535 PMCID: PMC10913200 DOI: 10.3389/fpls.2024.1364284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Heterosis is widely used in crop production, but phenotypic dominance and its underlying causes in soybeans, a significant grain and oil crop, remain a crucial yet unexplored issue. Here, the phenotypes and transcriptome profiles of three inbred lines and their resulting F1 seedlings were analyzed. The results suggest that F1 seedlings with superior heterosis in leaf size and biomass exhibited a more extensive recompilation in their transcriptional network and activated a greater number of genes compared to the parental lines. Furthermore, the transcriptional reprogramming observed in the four hybrid combinations was primarily non-additive, with dominant effects being more prevalent. Enrichment analysis of sets of differentially expressed genes, coupled with a weighted gene co-expression network analysis, has shown that the emergence of heterosis in seedlings can be attributed to genes related to circadian rhythms, photosynthesis, and starch synthesis. In addition, we combined DNA methylation data from previous immature seeds and observed similar recompilation patterns between DNA methylation and gene expression. We also found significant correlations between methylation levels of gene region and gene expression levels, as well as the discovery of 12 hub genes that shared or conflicted with their remodeling patterns. This suggests that DNA methylation in contemporary hybrid seeds have an impact on both the F1 seedling phenotype and gene expression to some extent. In conclusion, our study provides valuable insights into the molecular mechanisms of heterosis in soybean seedlings and its practical implications for selecting superior soybean varieties.
Collapse
Affiliation(s)
- Xiaobo Ren
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Liangyu Chen
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, South Subtropical Crops Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Lin Deng
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Qiuzhu Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xueying Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Weixuan Cong
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhenyuan Zang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Dingyi Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Miao Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Songnan Yang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Liu D, Yan G, Wang S, Yu L, Lin W, Lu S, Guo L, Yang QY, Dai C. Comparative transcriptome profiling reveals the multiple levels of crosstalk in phytohormone networks in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37154465 PMCID: PMC10363766 DOI: 10.1111/pbi.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/13/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Plant hormones are the intrinsic factors that control plant development. The integration of different phytohormone pathways in a complex network of synergistic, antagonistic and additive interactions has been elucidated in model plants. However, the systemic level of transcriptional responses to hormone crosstalk in Brassica napus is largely unknown. Here, we present an in-depth temporal-resolution study of the transcriptomes of the seven hormones in B. napus seedlings. Differentially expressed gene analysis revealed few common target genes that co-regulated (up- and down-regulated) by seven hormones; instead, different hormones appear to regulate distinct members of protein families. We then constructed the regulatory networks between the seven hormones side by side, which allowed us to identify key genes and transcription factors that regulate the hormone crosstalk in B. napus. Using this dataset, we uncovered a novel crosstalk between gibberellin and cytokinin in which cytokinin homeostasis was mediated by RGA-related CKXs expression. Moreover, the modulation of gibberellin metabolism by the identified key transcription factors was confirmed in B. napus. Furthermore, all data were available online from http://yanglab.hzau.edu.cn/BnTIR/hormone. Our study reveals an integrated hormone crosstalk network in Brassica napus, which also provides a versatile resource for future hormone studies in plant species.
Collapse
Affiliation(s)
- Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Guanbo Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wei Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Pi K, Huang Y, Luo W, Zeng S, Mo Z, Duan L, Liu R. Overdominant expression of genes plays a key role in root growth of tobacco hybrids. FRONTIERS IN PLANT SCIENCE 2023; 14:1107550. [PMID: 36798711 PMCID: PMC9927235 DOI: 10.3389/fpls.2023.1107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Heterosis has greatly improved the yield and quality of crops. However, previous studies often focused on improving the yield and quality of the shoot system, while research on the root system was neglected. We determined the root numbers of 12 F1 hybrids, all of which showed strong heterosis, indicating that tobacco F1 hybrids have general heterosis. To understand its molecular mechanism, we selected two hybrids with strong heterosis, GJ (G70 × Jiucaiping No.2) and KJ (K326 × Jiucaiping No.2), and their parents for transcriptome analysis. There were 84.22% and 90.25% of the differentially expressed genes were overdominantly expressed. The enrichment analysis of these overdominantly expressed genes showed that "Plant hormone signal transduction", "Phenylpropanoid biosynthesis", "MAPK signaling pathway - plant", and "Starch and sucrose metabolism" pathways were associated with root development. We focused on the analysis of the biosynthetic pathways of auxin(AUX), cytokinins(CTK), abscisic acid(ABA), ethylene(ET), and salicylic acid(SA), suggesting that overdominant expression of these hormone signaling pathway genes may enhance root development in hybrids. In addition, Nitab4.5_0011528g0020、Nitab4.5_0003282g0020、Nitab4.5_0004384g0070 may be the genes involved in root growth. Genome-wide comparative transcriptome analysis enhanced our understanding of the regulatory network of tobacco root development and provided new ideas for studying the molecular mechanisms of tobacco root development.
Collapse
Affiliation(s)
- Kai Pi
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Ying Huang
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Wen Luo
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Shuaibo Zeng
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, China
| | - Renxiang Liu
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| |
Collapse
|