1
|
Chrominski P, Carlson-Nilsson U, Palmé A, Kirk HG, Asdal Å, Ansebo L. Genetic markers identify duplicates in Nordic potato collections. FRONTIERS IN PLANT SCIENCE 2024; 15:1405314. [PMID: 39253569 PMCID: PMC11381411 DOI: 10.3389/fpls.2024.1405314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
Introduction The first small scale cultivation of potatoes in the Nordic countries began roughly 300 years ago, and later became an important staple food in the region. Organized conservation efforts began in the 1980s, and today, potato landraces, improved varieties, and breeding lines are conserved in genebanks at the Nordic Genetic Resource Center (NordGen), Sweden, and the Norwegian Genetic Resource Centre (NGS), Norway, as well as at potato breeding companies across Nordic countries. All these collections house a diverse array of genotypes with local names and local growing histories from the whole region. However, the presence of duplicates, and inconsistent naming has led to confusion. Methods In this study, 198 accessions of cultivated potato (Solanum tuberosum L.) have been genotyped with 62 microsatellite (SSR) markers. The analyzed accessions came from three collections: 43 accessions from the Danish Potato Breeding Foundation in Vandel (LKF-Vandel), 90 from NordGen and 65 from NGS. Results and discussion The genetic analysis revealed 140 unique potato genotypes and 31 groups/clusters of duplicates, most of which contained duplicate pairs and the others three to ten accessions. Several accessions with distinct names were genetically identical or very similar, suggesting historical sharing, and regional distribution of seed potatoes, leading to the emergence of diverse local names. Moreover, many improved varieties from early potato breeding were revealed to have duplicates that have been considered Nordic landraces. Furthermore, potato accessions with identical names but originating from different collections were confirmed to be duplicates. These findings have already influenced management decisions and will further improve management practices for Nordic potato collections. Additionally, this new knowledge will benefit Nordic potato breeding efforts and allow for the dissemination of more accurate information to other users of potato diversity.
Collapse
Affiliation(s)
- Pawel Chrominski
- NordGen Plants, Nordic Genetic Resource Center (NordGen), Alnarp, Sweden
| | | | - Anna Palmé
- NordGen Plants, Nordic Genetic Resource Center (NordGen), Alnarp, Sweden
| | | | - Åsmund Asdal
- NordGen Plants, Nordic Genetic Resource Center (NordGen), Alnarp, Sweden
- Norwegian Genetic Resource Centre (NGS), Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Lena Ansebo
- NordGen Plants, Nordic Genetic Resource Center (NordGen), Alnarp, Sweden
- Fredriksdal Museums and Gardens, Helsingborg Museum, Helsingborg, Sweden
| |
Collapse
|
2
|
Qu L, Huang X, Su X, Zhu G, Zheng L, Lin J, Wang J, Xue H. Potato: from functional genomics to genetic improvement. MOLECULAR HORTICULTURE 2024; 4:34. [PMID: 39160633 PMCID: PMC11331666 DOI: 10.1186/s43897-024-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Martina M, De Rosa V, Magon G, Acquadro A, Barchi L, Barcaccia G, De Paoli E, Vannozzi A, Portis E. Revitalizing agriculture: next-generation genotyping and -omics technologies enabling molecular prediction of resilient traits in the Solanaceae family. FRONTIERS IN PLANT SCIENCE 2024; 15:1278760. [PMID: 38375087 PMCID: PMC10875072 DOI: 10.3389/fpls.2024.1278760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience. Building this starting point, we aim at providing a useful tool for tackling the global agricultural resilience goals in these crops.
Collapse
Affiliation(s)
- Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| |
Collapse
|
4
|
Villano C, Procino S, Blaiotta G, Carputo D, D’Agostino N, Di Serio E, Fanelli V, La Notte P, Miazzi MM, Montemurro C, Taranto F, Aversano R. Genetic diversity and signature of divergence in the genome of grapevine clones of Southern Italy varieties. FRONTIERS IN PLANT SCIENCE 2023; 14:1201287. [PMID: 37771498 PMCID: PMC10525710 DOI: 10.3389/fpls.2023.1201287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Sexual reproduction has contributed to a significant degree of variability in cultivated grapevine populations. However, the additional influence of spontaneous somatic mutations has played a pivotal role in shaping the diverse landscape of grapevine agrobiodiversity. These naturally occurring selections, termed 'clones,' represent a vast reservoir of potentially valuable traits and alleles that hold promise for enhancing grape quality and bolstering plant resilience against environmental and biotic challenges. Despite their potential, many of these clones remain largely untapped.In light of this context, this study aims to delve into the population structure, genetic diversity, and distinctive genetic loci within a collection of 138 clones derived from six Campanian and Apulian grapevine varieties, known for their desirable attributes in viticulture and winemaking. Employing two reduced representation sequencing methods, we extracted Single-Nucleotide Polymorphism (SNP) markers. Population structure analysis and fixation index (FST) calculations were conducted both between populations and at individual loci. Notably, varieties originating from the same geographical region exhibited pronounced genetic similarity.The resulting SNP dataset facilitated the identification of approximately two hundred loci featuring divergent markers (FST ≥ 0.80) within annotated exons. Several of these loci exhibited associations with essential traits like phenotypic adaptability and environmental responsiveness, offering compelling opportunities for grapevine breeding initiatives. By shedding light on the genetic variability inherent in these treasured traditional grapevines, our study contributes to the broader understanding of their potential. Importantly, it underscores the urgency of preserving and characterizing these valuable genetic resources to safeguard their intra-varietal diversity and foster future advancements in grapevine cultivation.
Collapse
Affiliation(s)
- Clizia Villano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Silvia Procino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Institute of Biosciences and Bioresources (CNR-IBBR), Bari, Italy
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Institute of Biosciences and Bioresources (CNR-IBBR), Bari, Italy
| | - Ermanno Di Serio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Pierfederico La Notte
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Bari, Italy
| | | | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- Support Unit Bari, Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Bari, Italy
- SINAGRI S.r.l., Spin Off of the University of Bari Aldo Moro, Bari, Italy
| | | | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
5
|
Xiao XO, Zhang N, Jin H, Si H. Genetic Analysis of Potato Breeding Collection Using Single-Nucleotide Polymorphism (SNP) Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:1895. [PMID: 37176953 PMCID: PMC10181131 DOI: 10.3390/plants12091895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The autotetraploid potato (Solanum tuberosum L.) is an important crop in China, and it is widely cultivated from Northeast China to South China. Thousands of varieties are bred by breeding institutions or companies, and distinguishing the different varieties based on morphological characteristics is difficult. Using DNA fingerprints is an efficient method to identify varieties that plays an increasingly important role in germplasm identification and property rights protection. In this study, the genetic diversity and population structure of 135 autotetraploid potatoes were evaluated using specific-locus amplified fragment sequencing (SLAF-seq) methods. A total of 3,397,137 high-quality single-nucleotide polymorphisms (SNPs), which were distributed across 12 chromosomes, were obtained. Principal component analysis (PCA), neighbour-joining genetic trees, and model-based structure analysis showed that these autotetraploid potato subpopulations, classified by their SNPs, were not consistent with their geographical origins. On the basis of the obtained 3,397,137 SNPs, 160 perfect SNPs were selected, and 71 SNPs were successfully converted to penta-primer amplification refractory mutation (PARMS-SNP) markers. Additionally, 190 autotetraploid potato varieties were analysed using these 71 PARMS-SNP markers. The PCA results show that the accessions were not completely classified on the basis of their geographical origins. The SNP DNA fingerprints of the 190 autotetraploid potato varieties were also constructed. The SNP fingerprint results show that both synonyms and homonyms were present amongst the 190 autotetraploid potatoes. Above all, these novel SNP markers can lay a good foundation for the analysis of potato genetic diversity, DUS (distinctness, uniformity, and stability) testing, and plant variety protection.
Collapse
Affiliation(s)
- Xi-ou Xiao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.-o.X.); (N.Z.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China;
| | - Ning Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.-o.X.); (N.Z.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hui Jin
- South Subtropical Crop Research Institution, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China;
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.-o.X.); (N.Z.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Behn A, Lizana C, Zapata F, Gonzalez A, Reyes-Díaz M, Fuentes D. Phenolic and anthocyanin content characterization related to genetic diversity analysis of Solanum tuberosum subsp. tuberosum Chilotanum Group in southern Chile. FRONTIERS IN PLANT SCIENCE 2023; 13:1045894. [PMID: 36704150 PMCID: PMC9872146 DOI: 10.3389/fpls.2022.1045894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The potato (Solanum tuberosum L) is one of the four most important crops worldwide in production and consumption. It originated from South America along the Andes, where six hotspots of diversity known as subcenters of origin are described from Venezuela to Chiloe Island in Chile, and where the greatest diversity of potatoes in the world is found. Today, the use of ancestral genetic resources has gained significant relevance, recovering and producing foods with a greater nutrient content and beneficial to human health. Therefore, native potatoes possess a set of characteristics with great potential for use in potato breeding guided primarily to produce better feed, especially potatoes of the Chilotanum Group that are easily crossed with conventional varieties. The primary objective of this study was to evaluate 290 accessions of S. tuberosum subsp tuberosum belonging to the Chilotanum Group using a set of molecular markers and correlate them to its phenotypic traits for future use in breeding programs. For this purpose, 290 accessions were analysed through 22 specific microsatellites described previously, correlating them with flesh and skin colour, total phenolic content, and anthocyanin content. A division into groups considering all the 290 accessions resulted in two clusters using STRUCTURE analysis and seven different genetic clusters using UPGMA. The latter exhibited common phenotypic characteristics as well as anthocyanin content, strongly supporting a correlation between phenotypic traits and the genetic fingerprint. These results will enable breeders to focus on the development of potatoes with high polyphenol and anthocyanin content.
Collapse
Affiliation(s)
- Anita Behn
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Lizana
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia, Chile
| | - Felipe Zapata
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
| | - Alvaro Gonzalez
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Derie Fuentes
- Biocomputing and Applied Genetics, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
- Centro de Biotecnología de Sistemas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
7
|
Osterman J, Hammenhag C, Ortiz R, Geleta M. Discovering candidate SNPs for resilience breeding of red clover. FRONTIERS IN PLANT SCIENCE 2022; 13:997860. [PMID: 36247534 PMCID: PMC9554550 DOI: 10.3389/fpls.2022.997860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 06/02/2023]
Abstract
Red clover is a highly valuable crop for the ruminant industry in the temperate regions worldwide. It also provides multiple environmental services, such as contribution to increased soil fertility and reduced soil erosion. This study used 661 single nucleotide polymorphism (SNP) markers via targeted sequencing using seqSNP, to describe genetic diversity and population structure in 382 red clover accessions. The accessions were selected from NordGen representing red clover germplasm from Norway, Sweden, Finland and Denmark as well as from Lantmännen, a Swedish seed company. Each accession was represented by 10 individuals, which was sequenced as a pool. The mean Nei's standard genetic distance between the accessions and genetic variation within accessions were 0.032 and 0.18, respectively. The majority of the accessions had negative Tajima's D, suggesting that they contain significant proportions of rare alleles. A pairwise FST revealed high genetic similarity between the different cultivated types, while the wild populations were divergent. Unlike wild populations, which exhibited genetic differentiation, there was no clear differentiation among all cultivated types. A principal coordinate analysis revealed that the first principal coordinate, distinguished most of the wild populations from the cultivated types, in agreement with the results obtained using a discriminant analysis of principal components and cluster analysis. Accessions of wild populations and landraces collected from southern and central Scandinavia showed a higher genetic similarity to Lantmännen accessios. It is therefore possible to link the diversity of the environments where wild populations were collected to the genetic diversity of the cultivated and wild gene pools. Additionally, least absolute shrinkage and selection operator (LASSO) models revealed associations between variation in temperature and precipitation and SNPs within genes controlling stomatal opening. Temperature was also related to kinase proteins, which are known to regulate plant response to temperature stress. Furthermore, the variation between wild populations and cultivars was correlated with SNPs within genes regulating root development. Overall, this study comprehensively investigated Nordic European red clover germplasm, and the results provide forage breeders with valuable information for further selection and development of red clover cultivars.
Collapse
|