1
|
Zulfiqar B, Raza MAS, Saleem MF, Ali B, Aslam MU, Al-Ghamdi AA, Elshikh MS, Hassan MU, Toleikienė M, Ahmed J, Rizwan M, Iqbal R. Abscisic acid improves drought resilience, growth, physio-biochemical and quality attributes in wheat (Triticum aestivum L.) at critical growth stages. Sci Rep 2024; 14:20411. [PMID: 39223242 PMCID: PMC11369261 DOI: 10.1038/s41598-024-71404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Wheat is an important staple crop not only in Pakistan but all over the globe. Although the area dedicated to wheat cultivation expands annually, the quantity of wheat harvested is declining due to various biotic and abiotic factors. Global wheat production and output have suffered as a result of the drought, which is largely driven by a lack of water and environmental factors. Organic fertilizers have been shown to reduce the severity of drought. The current research was conducted in semi-arid climates to mitigate the negative effects of drought on wheat during its critical tillering (DTS), flowering (DFS), and grain filling (DGFS) stages through the application of three different abscisic acid treatments: ABA0 (0 mgL-1) control, ABA1 (100 mgL-1) and ABA2 (200 mgL-1). Wheat growth and yield characteristics were severely harmed by drought stress across all critical development stages, with the DGFS stage being particularly vulnerable and leading to a considerable loss in yield. Plant height was increased by 24.25%, the number of fertile tillers by 25.66%, spike length by 17.24%, the number of spikelets per spike by 16.68%, grain count per spike by 11.98%, thousand-grain weight by 14.34%, grain yield by 26.93% and biological yield by 14.55% when abscisic acid (ABA) was applied instead of the control treatment. Moreover, ABA2 increased the more physiological indices (water use efficiency (36.12%), stomatal conductance (44.23%), chlorophyll a (24.5%), chlorophyll b (29.8%), transpiration rate (23.03%), photosynthetic rate (24.84%), electrolyte leakage (- 38.76%) hydrogen peroxide (- 18.09%) superoxide dismutase (15.3%), catalase (20.8%), peroxidase (- 18.09%), and malondialdehyde (- 13.7%)) of drought-stressed wheat as compared to other treatments. In the case of N, P, and K contents in grain were maximally improved with the application of ABA2. Through the use of principal component analysis, we were able to correlate our results across scales and provide an explanation for the observed effects of ABA on wheat growth and production under arid conditions. Overall, ABA application at a rate of 200 mgL-1 is an effective technique to boost wheat grain output by mitigating the negative effects of drought stress.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, People's Republic of China
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Agricultural and Environmental Innovation Research Institute, Liaquatpur, 64000, Pakistan
| | - Muhammad Aown Sammar Raza
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | | | - Baber Ali
- School of Science, Western Sydney University, Penrith, 2751, Australia
| | - Muhammad Usman Aslam
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Mahmood Ul Hassan
- Department of Ecology and Ecological Engineering, College of Resources and Environmental Sciences, China Agricultural University, 2 W Yuanmingyuan Ave, Haidian, Beijing, 100193, China
- Agricultural and Environmental Innovation Research Institute, Liaquatpur, 64000, Pakistan
| | - Monika Toleikienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituo Al. 1, 58344, Akademija, Kedainiai, Lithuania
| | - Junaid Ahmed
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| |
Collapse
|
2
|
El Yamani M, Cordovilla MDP. Tolerance Mechanisms of Olive Tree ( Olea europaea) under Saline Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2094. [PMID: 39124213 PMCID: PMC11314443 DOI: 10.3390/plants13152094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
The olive tree (Olea europaea L.) is an evergreen tree that occupies 19% of the woody crop area and is cultivated in 67 countries on five continents. The largest olive production region is concentrated in the Mediterranean basin, where the olive tree has had an enormous economic, cultural, and environmental impact since the 7th century BC. In the Mediterranean region, salinity stands out as one of the main abiotic stress factors significantly affecting agricultural production. Moreover, climate change is expected to lead to increased salinization in this region, threatening olive productivity. Salt stress causes combined damage by osmotic stress and ionic toxicity, restricting olive growth and interfering with multiple metabolic processes. A large variability in salinity tolerance among olive cultivars has been described. This paper aims to synthesize information from the published literature on olive adaptations to salt stress and its importance in salinity tolerance. The morphological, physiological, biochemical, and molecular mechanisms of olive tolerance to salt stress are reviewed.
Collapse
Affiliation(s)
- Mohamed El Yamani
- Laboratory of Applied Sciences for the Environment and Sustainable Development, Essaouira School of Technology, Cadi Ayyad University, B.P. 383, Essaouira 40000, Morocco
| | - María del Pilar Cordovilla
- Center for Advances Studies in Olive Grove and Olive Oils, Faculty of Experimental Science, University of Jaén, Paraje Las Lagunillas, E-23071 Jaén, Spain
| |
Collapse
|
3
|
Rico EI, de la Fuente GCM, Morillas AO, Ocaña AMF. Physiological and biochemical study of the drought tolerance of 14 main olive cultivars in the Mediterranean basin. PHOTOSYNTHESIS RESEARCH 2024; 159:1-16. [PMID: 37923970 DOI: 10.1007/s11120-023-01052-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 11/06/2023]
Abstract
A complete study of 14 olive cultivars of great economic importance was carried out. These cultivars are Arbequina, Arbosana, Chemlali, Cornicabra, Cornezuelo de Jaén, Empeltre, Frantoio, Hojiblanca, Koroneiki, Manzanilla de Sevilla, Martina, Picual, Sikitita1 and Sikitita 2. All of them are certified by the World Olive Germplasm Bank of Córdoba (Spain). They are predominant cultivars in the olive groves of different locations throughout the Mediterranean basin, and they were subjected to total water deficit for a minimum of 14 days and a maximum of 42 days in the present study. Data such as chlorophyll content, soil moisture and specific leaf area were gathered. Photosynthetic parameters measured at the respective saturation irradiance of each cultivar were also analysed: assimilation rate, transpiration, stomatal conductance, photosynthetic efficiency, photochemical and non-photochemical quenching, photonic flux density, electron transference ratio, efficient use of water and amount of proline and malondialdehyde as indicators of oxidative stress. In addition to the control, two different experimental conditions were analysed: moderate drought, after 14 days of lack of irrigation, and severe drought, after 28-42 days of total absence of irrigation, depending on the tolerance of each cultivar. Based on the results, the cultivars were characterised and divided into four groups according to their drought tolerance: tolerant, moderately tolerant, moderately sensitive and sensitive to drought. This work represents the first contribution of drought tolerance of a considerable number of olive cultivars, with all of them being subjected to the same criteria and experimental conditions for their classification.
Collapse
Affiliation(s)
- Elena Illana Rico
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain
| | - Genoveva Carmen Martos de la Fuente
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain
| | - Ainhoa Ortega Morillas
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain
| | - Ana Maria Fernández Ocaña
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain.
| |
Collapse
|
4
|
Zahedi SM, Hosseini MS, Fahadi Hoveizeh N, Kadkhodaei S, Vaculík M. Physiological and Biochemical Responses of Commercial Strawberry Cultivars under Optimal and Drought Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:496. [PMID: 36771578 PMCID: PMC9919021 DOI: 10.3390/plants12030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Improving the extent of adaptation and the choice of the most tolerant cultivar is the first step to mitigating the adverse effects of limited water, especially in susceptible plants such as strawberries. To address this issue, two commercial strawberry cultivars (Camarosa and Gaviota) were compared when irrigated to match 100, 75, 50, and 25% field capacity (FC) to simulate the control, slight, moderate, and severe drought stress conditions, respectively. Drought stress induced the reduction of total chlorophyll, carotenoid, relative water content, and phenolic content significantly, whereas the activity of antioxidant enzymes, electrolyte leakage, osmolyte accumulation, and oxidative markers upsurged progressively in drought severity-dependent behavior. Gaviota produced more proline, hydrogen peroxide as a marker of membrane lipid peroxidation and disposed of by higher electrolyte leakage, significantly. On the other hand, Camarosa having higher soluble carbohydrates as well as enzymatic and non-enzymatic antioxidants could be considered a drought-tolerant cultivar. Genotypic variation between these cultivars could be used in breeding projects to promote drought-tolerant strawberries in the future.
Collapse
Affiliation(s)
- Seyed Morteza Zahedi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh 83111-55181, Iran
| | - Marjan Sadat Hosseini
- Department of Agriculture, Goldaru Pharmaceutical Company, Isfahan 81791-35111, Iran
| | - Narjes Fahadi Hoveizeh
- Department of Horticultural Science, College of Agriculture, Shahid Chamran University of Ahwaz, Ahwaz 61357-83151, Iran
| | - Saeid Kadkhodaei
- Agricultural Biotechnology Research Institute of Iran (ABRII), Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan 84156-83111, Iran
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina B2, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dubravska Cesta 14, 845 23 Bratislava, Slovakia
| |
Collapse
|
5
|
Ran J, Shang C, Mei L, Li S, Tian T, Qiao G. Overexpression of CpADC from Chinese Cherry ( Cerasus pseudocerasus Lindl. 'Manaohong') Promotes the Ability of Response to Drought in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms232314943. [PMID: 36499268 PMCID: PMC9740122 DOI: 10.3390/ijms232314943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Polyamines (PA) play an important role in the growth, development and stress resistance of plants, and arginine decarboxylase (ADC) is one of the key enzymes in the biosynthetic pathway of polyamines. Previously, the transcriptional regulation of the 'Manaohong' cherry under the shelter covering was carried out, and the PA synthase-related genes, particularly the ADC gene, were differentially expressed as exposure to drought stress. However, the mechanisms of how ADC is involved in the response of cherry to abiotic stress (especially drought stress) are still unknown. In the present work, the full-length coding sequence of this gene was isolated and named CpADC. Bioinformatics analysis indicated that the coding sequence of CpADC was 2529 bp in length. Cluster analysis showed that CpADC had the highest homologies with those of sweet cherry (Prunus avium, XP_021806331) and peach (Prunus persica, XP_007200307). Subcellular localization detected that the CpADC was localized in the plant nucleus. The qPCR quantification showed that CpADC was differentially expressed in roots, stems, leaves, flower buds, flowers, and fruits at different periods. Drought stress treatments were applied to both wild-type (WT) and transgenic Arabidopsis lines, and relevant physiological indicators were measured, and the results showed that the putrescine content of transgenic Arabidopsis was higher than that of WT under high-temperature treatment. The results showed that the MDA content of WT was consistently higher than that of transgenic plants and that the degree of stress in WT was more severe than in transgenic Arabidopsis, indicating that transgenic CpADC was able to enhance the stress resistance of the plants. Both the transgenic and WT plants had significantly higher levels of proline in their leaves after the stress treatment than before, but the WT plant had lower levels of proline than that of transgenic Arabidopsis in both cases. This shows that the accumulation of proline in the transgenic plants was higher than that in the wild type under drought and high and low-temperature stress, suggesting that the transgenic plants are more stress tolerant than the WT. Taken together, our results reveal that, under drought stress, the increase in both expressions of CpADC gene and Put (putrescine) accumulation regulates the activity of ADC, the content of MDA and Pro to enhance the drought resistance of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jiaxin Ran
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Chunqiong Shang
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Lina Mei
- Institute for Forest Resources & Environment of Guizhou, College of Forestry, Guizhou University, Guiyang 550025, China
| | - Shuang Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Tian Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-085-183-865-027
| |
Collapse
|