1
|
Shengmiao L, Xin D, Yue L, Lihua Y, Xiwang K, Yuhu Z. Genome-wide identification of the NAC family genes of adzuki bean and their roles in rust resistance through jasmonic acid signaling. BMC Genomics 2025; 26:283. [PMID: 40121461 PMCID: PMC11929360 DOI: 10.1186/s12864-025-11478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Adzuki bean (Vigna angularis) rust, caused by the fungus Uromyces vignae, is an important disease affecting adzuki bean yield and quality. Previously, several NAC transcription factors (TFs) were induced by rust infection in a resistant adzuki bean variety, suggesting that NAC TF members may play important roles in rust resistance. RESULTS To further explore the functions of NAC TFs in rust resistance and to provide a reference for resistant varietal breeding, 101 NAC TFs were identified from the adzuki bean genome. The synteny analysis revealed 25 pairs of VaNACs in the genome, which exhibited whole-genome/segmental duplication. Based on the phylogenetic relationships and conserved motif characteristics, the NAC TFs of V. angularis can be divided into 16 subfamilies. Previous transcriptome data showed that nine VaNACs are significantly induced by rust infection. Here, a cis-acting element analysis of these nine genes revealed that most contain hormone responsive elements, such as abscisic acid and methyl jasmonate (MeJA). The expression levels of these nine VaNACs were dynamically regulated in response to exogenous MeJA treatment, as revealed by quantitative real-time PCR analysis. Among them, seven VaNACs exhibited significantly upregulated expression, peaking at 12 h post treatment (hpt) and remaining significantly higher than that of the untreated control group for 48 hpt. These results suggest that these VaNACs are responsive to MeJA signaling and may play roles in the early and sustained transcriptional regulation of stress-related pathways. The exogenous MeJA decreased rust severity on adzuki bean leaves by 45.68%. Additionally, the expression levels of these nine genes in adzuki bean leaves in response to rust infection after pretreatment with MeJA were investigated. The expression of VaNAC002 rapidly peaked at 24 h post inoculation (hpi) and remained significantly higher than the control from 120 to 192 hpi. Subsequently, transient overexpression of VaNAC002 significantly enhanced the resistance of tobacco to Botrytis cinerea, indicating that VaNAC002 positively regulates plant disease resistance. CONCLUSION These findings suggest that adzuki bean NAC family members may play important roles in disease resistance through JA signaling, with VaNAC002 having a positive regulatory role in plant immunity.
Collapse
Affiliation(s)
- Liu Shengmiao
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Ding Xin
- Institute of Economic Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, 150000, China
| | - Li Yue
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yin Lihua
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Ke Xiwang
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zuo Yuhu
- National Coarse Cereals Engineering Research Center, Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
2
|
Saberi Riseh R, Fathi F, Lagzian A, Vatankhah M, Kennedy JF. Modifying lignin: A promising strategy for plant disease control. Int J Biol Macromol 2024; 271:132696. [PMID: 38823737 DOI: 10.1016/j.ijbiomac.2024.132696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Lignin is a complex polymer found in the cell walls of plants, providing structural support and protection against pathogens. By modifying lignin composition and structure, scientists aim to optimize plant defense responses and increase resistance to pathogens. This can be achieved through various genetic engineering techniques which involve manipulating the genes responsible for lignin synthesis. By either up regulating or down regulating specific genes, researchers can alter the lignin content, composition, or distribution in plant tissues. Reducing lignin content in specific tissues like leaves can improve the effectiveness of defense mechanisms by allowing for better penetration of antimicrobial compounds. Overall, Lignin modification through techniques has shown promising results in enhancing various plants resistance against pathogens. Furthermore, lignin modification can have additional benefits beyond pathogen resistance. It can improve biomass processing for biofuel production by reducing lignin recalcitrance, making the extraction of sugars from cellulose more efficient. The complexity of lignin biosynthesis and its interactions with other plant components make it a challenging target for modification. Additionally, the potential environmental impact and regulatory considerations associated with genetically modified organisms (GMOs) require careful evaluation. Ongoing research aims to further optimize this approach and develop sustainable solutions for crop protection.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
3
|
Yin L, Liu S, Sun W, Ke X, Zuo Y. Genome-wide identification of glutamate receptor genes in adzuki bean and the roles of these genes in light and rust fungal response. Gene 2023:147593. [PMID: 37364697 DOI: 10.1016/j.gene.2023.147593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Plant glutamate receptor proteins (GLRs) are involved in plant development, biotic stress, and light-signal transduction. Vigna angularis is a traditional crop with important economic value in China, and the identification of functional genes can facilitate the breeding of stress resistant varieties. Here, we identified the members of the GLR gene family in the adzuki bean genome and investigated gene expression under light and rust fungal (Uromyces vignae) stimuli. Sixteen GLR genes were identified in V. angularis (VaGLRs), and these genes clustered in a single clade (clade III) with two groups. Evolutionary analysis showed that three VaGLRs result from tandem duplications and four result from whole genome/segmental duplications. To understand the regulation of expression of VaGLRs, cis-acting elements were analyzed in the promoter regions of the VaGLRs including cis-acting elements associated with light and stress responsiveness. Expression analysis by qRT-PCR revealed transcripts of eight and 10 VaGLRs in response to light stimuli and rust infection, respectively. For light responsiveness, the expression levels of XP_017430569.1 and XP_017425299.1 were higher under light condition than in darkness, while the expression levels of XP_017406996.1, XP_017425763.1, and XP_017423557.1 gradually recovered during dark treatment. Additionally, the relative expression levels of XP_017413816.1, XP_017436268.1, and XP_017425299.1 were significantly elevated during U. vignae infection in a resistant cultivar compared to the expression levels in a susceptible cultivar. XP_017425299.1 expression was induced both by light and rust infection, suggesting this gene may link light and disease resistance signaling pathways. Our results provide insight into how the VaGLRs contribute to adzuki bean response to light stimulus and pathogen attack. These identified VaGLRs also provide important reference to improve adzuki bean germplasm resources.
Collapse
Affiliation(s)
- Lihua Yin
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shengmiao Liu
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Weina Sun
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xiwang Ke
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yuhu Zuo
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control / National Coarse Cereals Engineering Research Center / Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
4
|
Ijaz M, Khan F, Zaki HEM, Khan MM, Radwan KSA, Jiang Y, Qian J, Ahmed T, Shahid MS, Luo J, Li B. Recent Trends and Advancements in CRISPR-Based Tools for Enhancing Resistance against Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1911. [PMID: 37176969 PMCID: PMC10180734 DOI: 10.3390/plants12091911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Targeted genome editing technologies are becoming the most important and widely used genetic tools in studies of phytopathology. The "clustered regularly interspaced short palindromic repeats (CRISPR)" and its accompanying proteins (Cas) have been first identified as a natural system associated with the adaptive immunity of prokaryotes that have been successfully used in various genome-editing techniques because of its flexibility, simplicity, and high efficiency in recent years. In this review, we have provided a general idea about different CRISPR/Cas systems and their uses in phytopathology. This review focuses on the benefits of knock-down technologies for targeting important genes involved in the susceptibility and gaining resistance against viral, bacterial, and fungal pathogens by targeting the negative regulators of defense pathways of hosts in crop plants via different CRISPR/Cas systems. Moreover, the possible strategies to employ CRISPR/Cas system for improving pathogen resistance in plants and studying plant-pathogen interactions have been discussed.
Collapse
Affiliation(s)
- Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Muhammad Munem Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Khlode S. A. Radwan
- Plant Pathology Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China
| | - Jiahui Qian
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Sun W, Yuan M, Yin L, Ke X, Zuo Y. A natriuretic peptide molecule from Vigna angularis, VaEG45, confers rust resistance by inhibiting fungal development. PLANT CELL REPORTS 2023; 42:409-420. [PMID: 36576553 DOI: 10.1007/s00299-022-02967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Novel function and mechanism of a PNP molecule VaEG45 from adzuki bean involved in plant immunity. Plant natriuretic peptides (PNPs) can affect a broad spectrum of physiological responses in plants acting as peptidic signaling molecules. However, PNPs may play additional roles in plant immunity. Our previous transcriptome data of adzuki bean (Vigna angularis) in response to Uromyces vignae infection revealed association of PNP-encoding gene VaEG45 with U. vignae resistance. To determine the function of VaEG45 in disease resistance, we cloned the 589 bp nucleotide sequence of VaEG45 containing 2 introns, encoding a putative 13.68 kDa protein that is 131 amino acids in length. We analyzed expression in different resistant cultivars of V. angularis and found significant induction of VaEG45 expression after U. vignae infection. Transient expression of VaEG45 improved tobacco resistance against Botrytis cinerea. We next analyzed the mechanism by which VaEG45 protects plants from fungal infection by determination of the biological activity of the prokaryotic expressed VaEG45. The results showed that the fusion protein VaEG45 can significantly inhibit urediospores germination of U. vignae, mycelial growth, and the infection of tobacco by B. cinerea. Further analysis revealed that VaEG45 exhibits β-1, 3-glucanase activity. These findings uncover the function of a novel PNP molecule VaEG45 and provide new evidence about the mechanism of PNPs in plant immunity.
Collapse
Affiliation(s)
- Weina Sun
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mengqi Yuan
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lihua Yin
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiwang Ke
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Yuhu Zuo
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, National Coarse Cereals Engineering Research Center, Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
6
|
Ninkuu V, Yan J, Fu Z, Yang T, Ziemah J, Ullrich MS, Kuhnert N, Zeng H. Lignin and Its Pathway-Associated Phytoalexins Modulate Plant Defense against Fungi. J Fungi (Basel) 2022; 9:52. [PMID: 36675873 PMCID: PMC9865837 DOI: 10.3390/jof9010052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Fungi infections cause approximately 60-70% yield loss through diseases such as rice blast, powdery mildew, Fusarium rot, downy mildew, etc. Plants naturally respond to these infections by eliciting an array of protective metabolites to confer physical or chemical protection. Among plant metabolites, lignin, a phenolic compound, thickens the middle lamella and the secondary cell walls of plants to curtail fungi infection. The biosynthesis of monolignols (lignin monomers) is regulated by genes whose transcript abundance significantly improves plant defense against fungi. The catalytic activities of lignin biosynthetic enzymes also contribute to the accumulation of other defense compounds. Recent advances focus on modifying the lignin pathway to enhance plant growth and defense against pathogens. This review presents an overview of monolignol regulatory genes and their contributions to fungi immunity, as reported over the last five years. This review expands the frontiers in lignin pathway engineering to enhance plant defense.
Collapse
Affiliation(s)
- Vincent Ninkuu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jianpei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zenchao Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Tengfeng Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - James Ziemah
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Matthias S. Ullrich
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Nikolai Kuhnert
- Department of Life Sciences and Chemistry, Jacobs University, College Ring 1, 28759 Bremen, Germany
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|