1
|
Li-Zhen L, Dong-Yan T, Wu-Fu D, Shu-Dong Z. The chloroplast genome of Cephalanthera nanchuanica (Orchidaceae): comparative and phylogenetic analysis with other Neottieae species. BMC Genomics 2024; 25:1090. [PMID: 39548369 PMCID: PMC11566296 DOI: 10.1186/s12864-024-11004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Cephalanthera nanchuanica is a terrestrial orchid species and has been red listed as a second-grade protected plant due to its limited distributions in China. Initially classified within a monotypic genus Tangtsinia, this species was later reassigned to Cephalanthera based on morphological and molecular data. However, previous phylogenetic analyses of Cephalanthera using several segment sequences exhibited a low discriminatory power in delineating its relationships. RESULTS In this study, we characterized and comparatively analyzed the complete chloroplast (cp) genome of C. nanchuanica with those of six previously reported Cephalanthera species. Our findings revealed that the cp genome of C. nanchuanica had the typical quadripartite structure, with a size of 161,365 bp and a GC content of 37.27%. A total of 113 unique genes were annotated, among which nearly half of protein-encoding genes (RSCU > 1) showed a preference in codon usage. No structural rearrangements were observed among the cp genomes of Cephalanthera species, except for C. humilis, which displayed structural alterations due to gene loss, relocation, and inverted repeat (IR) expansion/contraction. The cp genomes of Cephalanthera species were highly conserved, with only a small number of SSRs detected, most of which preferred A/T bases. Comparative analysis of cp genomes indicated that IR and coding regions were less divergent than single copy and non-coding regions and eight mutational hotspots were identified. Phylogenetic analysis suggested that the tribe Neottieae was a monophyletic group, divided into five clades. Palmorchis was the earliest-diverging lineage, followed by Cephalanthera. Diplandrorchis was deeply nested within Neottia, forming a clade. Aphyllorchis and Limodorum formed another clade, sister to Epipactis. Within the Cephalanthera clade, C. nanchuanica was sister to C. falcata with a strong support. CONCLUSIONS This study demonstrated that the cp genome characters of C. nanchuanica are highly similar to those of other Cephalanthera species, except for the mycoheterotrophic species C. humilis. Although the cp genomes of Cephalanthera species (excluding C. humilis) exhibited conservation in genome structure and sequence, SSR repeats and mutational hotspots were identified, which could potentially serve as as molecular markers for distinguishing Cephalanthera species. The phylogenetic analysis based on the protein-coding genes provided high-resolution support for the infrageneric classification. Therefore, cp genome data will be instrumental in resolving the phylogeny of the genus Cephalanthera.
Collapse
Affiliation(s)
- Ling Li-Zhen
- Key Laboratory for Specialty Agricultural Germplasm Resources Development and Utilization of Guizhou Province, Liupanshui Normal University, Liupanshui, 553004, China
| | - Tang Dong-Yan
- Liupanshui Forestry Bureau, Liupanshui, 553004, China
| | - Ding Wu-Fu
- Liupanshui Forestry Bureau, Liupanshui, 553004, China
| | - Zhang Shu-Dong
- Key Laboratory for Specialty Agricultural Germplasm Resources Development and Utilization of Guizhou Province, Liupanshui Normal University, Liupanshui, 553004, China.
| |
Collapse
|
2
|
Goedderz S, Clements MA, Bent SJ, Nicholls JA, Patel VS, Crayn DM, Schlüter PM, Nargar K. Plastid phylogenomics reveals evolutionary relationships in the mycoheterotrophic orchid genus Dipodium and provides insights into plastid gene degeneration. FRONTIERS IN PLANT SCIENCE 2024; 15:1388537. [PMID: 38938632 PMCID: PMC11210000 DOI: 10.3389/fpls.2024.1388537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
The orchid genus Dipodium R.Br. (Epidendroideae) comprises leafy autotrophic and leafless mycoheterotrophic species, with the latter confined to sect. Dipodium. This study examined plastome degeneration in Dipodium in a phylogenomic and temporal context. Whole plastomes were reconstructed and annotated for 24 Dipodium samples representing 14 species and two putatively new species, encompassing over 80% of species diversity in sect. Dipodium. Phylogenomic analysis based on 68 plastid loci including a broad outgroup sampling across Orchidaceae found that sect. Leopardanthus is the sister lineage to sect. Dipodium. Dipodium ensifolium, the only leafy autotrophic species in sect. Dipodium, was found to be a sister to all leafless, mycoheterotrophic species, supporting a single evolutionary origin of mycoheterotrophy in the genus. Divergence-time estimations found that Dipodium arose ca. 33.3 Ma near the lower boundary of the Oligocene and that crown diversification commenced in the late Miocene, ca. 11.3 Ma. Mycoheterotrophy in the genus was estimated to have evolved in the late Miocene, ca. 7.3 Ma, in sect. Dipodium. The comparative assessment of plastome structure and gene degradation in Dipodium revealed that plastid ndh genes were pseudogenised or physically lost in all Dipodium species, including in leafy autotrophic species of both Dipodium sections. Levels of plastid ndh gene degradation were found to vary among species as well as within species, providing evidence of relaxed selection for retention of the NADH dehydrogenase complex within the genus. Dipodium exhibits an early stage of plastid genome degradation, as all species were found to have retained a full set of functional photosynthesis-related genes and housekeeping genes. This study provides important insights into plastid genome degradation along the transition from autotrophy to mycoheterotrophy in a phylogenomic and temporal context.
Collapse
Affiliation(s)
- Stephanie Goedderz
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Mark A. Clements
- Centre for Australian National Biodiversity Research (joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
| | - Stephen J. Bent
- Data61, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Brisbane, QLD, Australia
| | - James A. Nicholls
- Australian National Insect Collection, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Vidushi S. Patel
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| | - Darren M. Crayn
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
| | - Philipp M. Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Katharina Nargar
- Australian Tropical Herbarium, James Cook University, Cairns, QLD, Australia
- National Research Collections Australia, Commonwealth Industrial and Scientific Research Organisation (CSIRO), Canberra, ACT, Australia
| |
Collapse
|
3
|
Long J, He WC, Peng HW, Erst AS, Wang W, Xiang KL. Comparative plastome analysis of the sister genera Ceratocephala and Myosurus (Ranunculaceae) reveals signals of adaptive evolution to arid and aquatic environments. BMC PLANT BIOLOGY 2024; 24:202. [PMID: 38509479 PMCID: PMC10953084 DOI: 10.1186/s12870-024-04891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Expansion and contraction of inverted repeats can cause considerable variation of plastid genomes (plastomes) in angiosperms. However, little is known about whether structural variations of plastomes are associated with adaptation to or occupancy of new environments. Moreover, adaptive evolution of angiosperm plastid genes remains poorly understood. Here, we sequenced the complete plastomes for four species of xerophytic Ceratocephala and hydrophytic Myosurus, as well as Ficaria verna. By an integration of phylogenomic, comparative genomic, and selection pressure analyses, we investigated evolutionary patterns of plastomes in Ranunculeae and their relationships with adaptation to dry and aquatic habitats. RESULTS Owing to the significant contraction of the boundary of IRA/LSC towards the IRA, plastome sizes and IR lengths of Myosurus and Ceratocephala are smaller within Ranunculeae. Compared to other Ranunculeae, the Myosurus plastome lost clpP and rps16, one copy of rpl2 and rpl23, and one intron of rpoC1 and rpl16, and the Ceratocephala plastome added an infA gene and lost one copy of rpl2 and two introns of clpP. A total of 11 plastid genes (14%) showed positive selection, two genes common to Myosurus and Ceratocephala, seven in Ceratocephala only, and two in Myosurus only. Four genes showed strong signals of episodic positive selection. The rps7 gene of Ceratocephala and the rpl32 and ycf4 genes of Myosurus showed an increase in the rate of variation close to 3.3 Ma. CONCLUSIONS The plastomic structure variations as well as the positive selection of two plastid genes might be related to the colonization of new environments by the common ancestor of Ceratocephala and Myosurus. The seven and two genes under positive selection might be related to the adaptation to dry and aquatic habitats in Ceratocephala and Myosurus, respectively. Moreover, intensified aridity and frequent sea-level fluctuations, as well as global cooling, might have favored an increased rate of change in some genes at about 3.3 Ma, associated with adaptation to dry and aquatic environments, respectively. These findings suggest that changing environments might have influenced structural variations of plastomes and fixed new mutations arising on some plastid genes owing to adaptation to specific habitats.
Collapse
Affiliation(s)
- Jing Long
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wen-Chuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Zolotodolinskaya Str. 101, Novosibirsk, 630090, Russia
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|