1
|
Chen W, Cui Y, He Y, Zhao L, Cui R, Liu X, Huang H, Zhang Y, Fan Y, Feng X, Ni K, Jiang T, Han M, Lei Y, Liu M, Meng Y, Chen X, Lu X, Wang D, Wang J, Wang S, Guo L, Chen Q, Ye W. Raffinose degradation-related gene GhAGAL3 was screened out responding to salinity stress through expression patterns of GhAGALs family genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1246677. [PMID: 38192697 PMCID: PMC10773686 DOI: 10.3389/fpls.2023.1246677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
A-galactosidases (AGALs), the oligosaccharide (RFO) catabolic genes of the raffinose family, play crucial roles in plant growth and development and in adversity stress. They can break down the non-reducing terminal galactose residues of glycolipids and sugar chains. In this study, the whole genome of AGALs was analyzed. Bioinformatics analysis was conducted to analyze members of the AGAL family in Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, and Gossypium raimondii. Meanwhile, RT-qPCR was carried out to analyze the expression patterns of AGAL family members in different tissues of terrestrial cotton. It was found that a series of environmental factors stimulated the expression of the GhAGAL3 gene. The function of GhAGAL3 was verified through virus-induced gene silencing (VIGS). As a result, GhAGAL3 gene silencing resulted in milder wilting of seedlings than the controls, and a significant increase in the raffinose content in cotton, indicating that GhAGAL3 responded to NaCl stress. The increase in raffinose content improved the tolerance of cotton. Findings in this study lay an important foundation for further research on the role of the GhAGAL3 gene family in the molecular mechanism of abiotic stress resistance in cotton.
Collapse
Affiliation(s)
- Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, Hunan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xixian Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Tiantian Jiang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yuqian Lei
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
2
|
Yao P, Zhang C, Zhang D, Qin T, Xie X, Liu Y, Liu Z, Bai J, Bi Z, Cui J, Liang J, Sun C. Characterization and Identification of Drought-Responsive ABA-Aldehyde Oxidase (AAO) Genes in Potato ( Solanum tuberosum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3809. [PMID: 38005706 PMCID: PMC10674669 DOI: 10.3390/plants12223809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Abscisic acid (ABA) is an important stress hormone that affects plants' tolerance to stress. Changes in the content of abscisic can have an impact on plant responses to abiotic stress. The abscisic acid aldehyde oxidase (AAO) plays a crucial role in the final step in the synthesis of abscisic acid; therefore, understanding the function of the AAO gene family is of great significance for insight into plants' response to abiotic stresses. In this study, Solanum tuberosum AAO (StAAO) members were exhaustively explored using genome databases, and nine StAAOs were identified. Chromosomal location analysis indicated that StAAO genes mapped to 4 of the 14 potato chromosomes. Further analyses of gene structure and motif composition showed that members of the specific StAAO subfamily showed relatively conserved characteristics. Phylogenetic relationship analysis indicated that StAAOs proteins were divided into three major clades. Promoter analysis showed that most StAAO promoters contained cis-elements related to abiotic stress response and plant hormones. The results of tissue-specific expression analysis indicated that StAAO4 was predominantly expressed in the roots. Analysis of transcriptome data revealed that StAAO2/4/6 genes responded significantly to drought treatments. Moreover, further qRT-PCR analysis results indicated that StAAO2/4/6 not only significantly responded to drought stress but also to various phytohormone (ABA, SA, and MeJA) and abiotic stresses (salt and low temperature), albeit with different expression patterns. In summary, our study provides comprehensive insights into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of the StAAO gene family. These findings lay the foundation for a deeper understanding of the StAAO gene family and offer a potential genetic resource for breeding drought-resistant potato varieties.
Collapse
Affiliation(s)
- Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Chunli Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaofei Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junmei Cui
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
| | - Jingwen Liang
- Planning and Finance Department, Gansu Agricultural University, Lanzhou 730070, China;
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (D.Z.); (T.Q.); (X.X.); (Y.L.); (Z.L.); (J.B.); (Z.B.); (J.C.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|