1
|
Dong X, Shao J, Wu X, Dong J, Tang P. Lipidomic profiling reveals the protective mechanism of nitrogen-controlled atmosphere on brown rice quality during storage. Food Chem 2025; 473:143081. [PMID: 39884227 DOI: 10.1016/j.foodchem.2025.143081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Rice, a globally important staple, requires effective preservation methods to maintain its quality during extended storage. This study explored the efficacy of nitrogen-controlled atmosphere (NCA) storage in preserving the quality of brown rice during a one-year period using UHPLC-MS/MS based lipidomic profiling. A total of 1013 lipids were identified and categorized into five main groups. Specific lipids including triglycerides (TG), diglycerides (DG), phosphatidylethanolamines (PE), cardiolipins (CL), and ceramides (Cer), were highlighted as potential biomarkers for assessing rice rancidity. NCA storage significantly suppressed lipase and lipoxygenase activities, reducing lipid hydrolysis and oxidation to effectively delayed rice quality deterioration. Furthermore, NCA regulated glycerolipid and glycerophospholipid metabolisms, promoting lipid remodeling while reducing the degradation of TGs and phospholipids. This regulation preserved cellular membrane integrity, limited fatty acid release, and mitigate rancidity and quality loss during storage. These findings elucidate the mechanism by which NCA storage delays deterioration and extends the stored rice shelf-life.
Collapse
Affiliation(s)
- Xue Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Jin Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Xueyou Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Jialin Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Peian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Zheng T, Yang J, Chen Q, Huang X, Xue Y, Tang Q, Wang G, Li Y, Hu Z, Zeng HT. Analysis of lipidomics profile of Brassica napus hybrid 'Fangyou 777' and its parents during ripening stages based on UPLC-MS/MS. BMC PLANT BIOLOGY 2025; 25:197. [PMID: 39953462 PMCID: PMC11827199 DOI: 10.1186/s12870-025-06220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Lipids in rapeseed is of great significance to human health, and 'Fangyou 777' (No. GPD-2019-510073) has been identified as an excellent cultivar with high oil content. However, the change of lipid profile at different ripening stages remain unclear. Herein, UPLC-MS/MS was utilized for comprehensive lipidomics analysis of 'Fangyou 777' and its parents at four ripening stages. RESULTS 778 lipids components across 25 subclasses were identified, and triglycerides (TGs), diglycerides (DGs), phosphatidylserines (PSs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and free fatty acids (FFAs) were identified as the dominant lipid subclass. Due to heterotic vigor, the total lipids, TGs, FFAs, lysophosphatidylglycerol (LPGs) and PSs contents in 'Fangyou 777' were significantly higher than its parents. The PCA and OPLS-DA results elucidated that lipids in 'Fangyou 777' differed obviously from its parents at S1 (17 April, 2023; 28 days before ripening, 28 DBR), S2 (1 May, 2023; 14 DBR), and S3 (15 May, 2023; ripening day). TG(18:1_18:3_22:1), TG(18:1_22:1_18:2), TG(16:0_18:1_20:1), TG(16:0_18:1_22:1), TG(20:1_18:2_20:2), TG(18:1_18:1_20:1), and FFA(24:4) were recognized as key differential lipids. The glycerolipid metabolism and unsaturated fatty acid biosynthesis were the differential metabolic pathways at S1 and S3, while glycosylphosphatidylinositol (GPI)-anchor biosynthesis and glycerophospholipid metabolism were the differential metabolic pathways at S2 and S4 (7 days after ripening/physiologically ripened for one week). CONCLUSION This study provided a comprehensive profile to facilitate the understanding lipids accumulation in 'Fangyou 777' and its parents during ripening stages, and offered a foundation to comprehend lipid metabolism.
Collapse
Affiliation(s)
- Tao Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Jianmei Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Qiao Chen
- Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723001, China
| | - Xinxin Huang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Yan Xue
- Hanzhong Institute of Agricultural Sciences, Hanzhong, Shaanxi, 723001, China
| | - Qi Tang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Guodong Wang
- College of Life Sciences, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Ying Li
- Hanzhong Institute of Agricultural Sciences, Hanzhong, Shaanxi, 723001, China
| | - Zhubing Hu
- Henan University, Kaifeng, Henan, 475001, China.
| | - Haitao T Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China.
| |
Collapse
|
3
|
Ding LN, Hu YH, Li T, Li M, Li YT, Wu YZ, Cao J, Tan XL. A GDSL motif-containing lipase modulates Sclerotinia sclerotiorum resistance in Brassica napus. PLANT PHYSIOLOGY 2024; 196:2973-2988. [PMID: 39321167 PMCID: PMC11638095 DOI: 10.1093/plphys/kiae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum (Lib.) De Bary is a devastating disease infecting hundreds of plant species. It also restricts the yield, quality, and safe production of rapeseed (Brassica napus) worldwide. However, the lack of resistance sources and genes to S. sclerotiorum has greatly restricted rapeseed SSR-resistance breeding. In this study, a previously identified GDSL motif-containing lipase gene, B. napus GDSL LIPASE-LIKE 1 (BnaC07.GLIP1), encoding a protein localized to the intercellular space, was characterized as functioning in plant immunity to S. sclerotiorum. The BnaC07.GLIP1 promoter is S. sclerotiorum-inducible and the expression of BnaC07.GLIP1 is substantially enhanced after S. sclerotiorum infection. Arabidopsis (Arabidopsis thaliana) heterologously expressing and rapeseed lines overexpressing BnaC07.GLIP1 showed enhanced resistance to S. sclerotiorum, whereas RNAi suppression and CRISPR/Cas9 knockout B. napus lines were hyper-susceptible to S. sclerotiorum. Moreover, BnaC07.GLIP1 affected the lipid composition and induced the production of phospholipid molecules, such as phosphatidylethanolamine, phosphatidylcholine, and phosphatidic acid, which were correlated with decreased levels of reactive oxygen species (ROS) and enhanced expression of defense-related genes. A B. napus bZIP44 transcription factor specifically binds the CGTCA motif of the BnaC07.GLIP1 promoter to positively regulate its expression. BnbZIP44 responded to S. sclerotiorum infection, and its heterologous expression inhibited ROS accumulation, thereby enhancing S. sclerotiorum resistance in Arabidopsis. Thus, BnaC07.GLIP1 functions downstream of BnbZIP44 and is involved in S. sclerotiorum resistance by modulating the production of phospholipid molecules and ROS homeostasis in B. napus, providing insights into the potential roles and functional mechanisms of BnaC07.GLIP1 in plant immunity and for improving rapeseed SSR disease-resistance breeding.
Collapse
Affiliation(s)
- Li-Na Ding
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ying-Hui Hu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Teng Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ming Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yue-Tao Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yuan-Zhen Wu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jun Cao
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Wang LX, Wang YH, Chen C, Liu JX, Li T, Li JW, Liu PZ, Xu DB, Shu S, Xiong AS. Advances in research on the main nutritional quality of daylily, an important flower vegetable of Liliaceae. PeerJ 2024; 12:e17802. [PMID: 39131608 PMCID: PMC11316465 DOI: 10.7717/peerj.17802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Daylily (Hemerocallis citrina) is a perennial herb of the genus Hemerocallis of Liliaceae. It is also an economically important crop and is widely cultivated. Daylily has nutritional, medicinal and ornamental values. The research literature shows that daylily is a high-quality food raw material rich in soluble sugars, ascorbic acid, flavonoids, dietary fiber, carotenoids, mineral elements, polyphenols and other nutrients, which are effective in clearing heat and diuresis, resolving bruises and stopping bleeding, strengthening the stomach and brain, and reducing serum cholesterol levels. This article reviews the main nutrients of daylily and summarizes the drying process of daylily. In addition, due to the existence of active ingredients, daylily also has a variety of biological activities that are beneficial to human health. This article also highlights the nutritional quality of daylily, the research progress of dried vegetable rehydration technology and dried daylily. In the end, the undeveloped molecular mechanism and functional research status of daylily worldwide are introduced in order to provide reference for the nutritional quality research and dried processing industry of daylily.
Collapse
Affiliation(s)
- Li-Xiang Wang
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
| | - Ya-Hui Wang
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Chen Chen
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Jing-Wen Li
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Pei-Zhuo Liu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - De-Bao Xu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| | - Sheng Shu
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
| | - Ai-Sheng Xiong
- Suqian Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Facility Horticulture Research Institute of Suqian, Suqian, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization/Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Miao Y, Li H, Pan J, Zhou B, He T, Wu Y, Zhou D, He W, Chen L. Salicylic acid modulates secondary metabolism and enhanced colchicine accumulation in long yellow daylily ( Hemerocallis citrina). AOB PLANTS 2024; 16:plae029. [PMID: 38988684 PMCID: PMC11232463 DOI: 10.1093/aobpla/plae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024]
Abstract
Salicylic acid (SA) is an essential phytoregulator that is widely used to promote the synthesis of high-value nutraceuticals in plants. However, its application in daylily, an ornamental plant highly valued in traditional Chinese medicine, has not been reported. Herein, we investigated the exogenous SA-induced physiological, transcriptional and biochemical changes in long yellow daylily (LYD). We found that 2 mg/L foliar SA treatment significantly improved LYD plant growth and yield. Transcriptome sequencing and differentially expressed genes (DEGs) analysis revealed that the phenylpropanoid biosynthesis, isoquinoline alkaloid biosynthesis, sulfur metabolism, plant hormone signal transduction and tyrosine metabolism were significantly induced in SA-treated leaves. Many transcription factors and antioxidant system-related DEGs were induced under the SA treatment. Biochemical analyses showed that the leaf contents of soluble sugar, soluble protein (Cpr), ascorbic acid (AsA) and colchicine were significantly increased by 15.15% (from 30.16 ± 1.301 to 34.73 ± 0.861 mg/g), 19.54% (from 60.3 ± 2.227 to 72.08 ± 1.617 mg/g), 30.45% (from 190.1 ± 4.56 to 247.98 ± 11.652 μg/g) and 73.05% (from 3.08 ± 0.157 to 5.33 ± 0.462 μg/g), respectively, under the SA treatment. Furthermore, we identified 15 potential candidate genes for enhancing the growth, production and phytochemical content of LYD. Our results provide support for the bioaccumulation of colchicine in yellow daylily and valuable resources for biotechnological-assisted production of this important nutraceutical in Hemerocallis spp.
Collapse
Affiliation(s)
- Yeminzi Miao
- Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Hanmei Li
- College of Forestry Science and Technology, Lishui Vocational & Technical College, Lishui, Zhejiang 323000, China
| | - Junjie Pan
- Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Binxiong Zhou
- Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Tianjun He
- Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Yanxun Wu
- Lishui Science & Technology Bureau, Lishui, Zhejiang 323000, China
| | - Dayun Zhou
- Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Weimin He
- Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Limin Chen
- Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| |
Collapse
|
6
|
Ma X, Li W, Zhang H, Lu P, Chen P, Chen L, Qu C. Influence of Nitrogen-Modified Atmosphere Storage on Lipid Oxidation of Peanuts: From a Lipidomic Perspective. Foods 2024; 13:277. [PMID: 38254578 PMCID: PMC10814783 DOI: 10.3390/foods13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The effect of nitrogen-modified atmosphere storage (NS) on peanut lipid oxidation was investigated in this paper. Non-targeted lipidomics was employed to detect the lipid metabolites in peanuts with the aim of exploring the mechanism of lipid oxidation in peanuts under different storage conditions. The results showed that compared with conventional storage (CS), NS significantly (p < 0.05) delayed the increase in acid value, carbonyl value, and 2-thiobarbituric acid value and the decrease in vitamin E content. However, the storage time has a much greater effect on lipid oxidation than the oxygen level in the storage environment. Lipidomics analysis revealed that there were significant differences in metabolite changes between CS and NS. NS reduced the decline of most glycerophospholipids by regulating lipid metabolism in peanuts. NS maintained higher levels of Diacylglycerol (DAG), sulfoquinovosyl diacylglycerol (SQDG), lysophophatidylcholine (LPC), lysophosphatidylethanolamine (LPE) and phosphatidylinositol (PI) compared to CS. This work provided a basis for the application of NS technology to peanut storage.
Collapse
Affiliation(s)
- Xia Ma
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (X.M.); (W.L.); (H.Z.); (P.L.); (P.C.)
| | - Wenhao Li
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (X.M.); (W.L.); (H.Z.); (P.L.); (P.C.)
| | - Huayang Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (X.M.); (W.L.); (H.Z.); (P.L.); (P.C.)
| | - Peng Lu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (X.M.); (W.L.); (H.Z.); (P.L.); (P.C.)
| | - Pengxiao Chen
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (X.M.); (W.L.); (H.Z.); (P.L.); (P.C.)
| | - Liang Chen
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chenling Qu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (X.M.); (W.L.); (H.Z.); (P.L.); (P.C.)
| |
Collapse
|