1
|
Chen S, Li S, Dai S, Song Z, Cui X, Liu Z, Xu M. EjLAC12 is involved in postharvest chilling injury in loquat fruits by regulating lignin polymerization. PHYSIOLOGIA PLANTARUM 2025; 177:e70237. [PMID: 40265225 DOI: 10.1111/ppl.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Loquat fruits are susceptible to chilling injury at low temperatures following harvest, and heat shock treatment (HT) effectively mitigates chilling-induced lignification in these fruits. Laccase (LAC) is involved in lignin deposition. In this study, 43 laccase genes were identified based on the loquat genome, and the expression patterns of laccases were analyzed during fruit development and postharvest storage. The expression pattern analysis and subcellular localization revealed that EjLAC12 is involved in the regulation of lignin biosynthesis. Furthermore, the overexpression of EjLAC12 in tomato plants resulted in increased lignin and flavonoid contents. Overall, EjLAC12 promotes the accumulation of lignin during low-temperature storage, whereas HT treatment can alleviate its transcription, thereby mitigating postharvest chilling-induced lignification in loquat fruits.
Collapse
Affiliation(s)
- Shoubing Chen
- Shandong Province Crop Molecular Design and Precision Breeding Laboratory of University Specialties, Linyi University, Linyi, China
| | - Shuaijie Li
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Shengjie Dai
- Shandong Province Crop Molecular Design and Precision Breeding Laboratory of University Specialties, Linyi University, Linyi, China
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Zhikai Song
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Xiaoyu Cui
- Shandong Province Crop Molecular Design and Precision Breeding Laboratory of University Specialties, Linyi University, Linyi, China
| | - Zhenning Liu
- Shandong Province Crop Molecular Design and Precision Breeding Laboratory of University Specialties, Linyi University, Linyi, China
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Meng Xu
- Shandong Province Crop Molecular Design and Precision Breeding Laboratory of University Specialties, Linyi University, Linyi, China
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| |
Collapse
|
2
|
Zhou J, Hu F, Berhe M, Zhou R, Li D, Li H, Yang L, Zhou T, Zhang Y, Wang L, You J. Genome-wide identification, classification, and expression profiling of LAC gene family in sesame. BMC PLANT BIOLOGY 2024; 24:1254. [PMID: 39725882 DOI: 10.1186/s12870-024-05982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop. RESULTS In this study, 51 sesame LAC genes (SiLACs) were identified, which were unevenly distributed across different chromosomes. The phylogeny of Arabidopsis LAC (AtLACs) subdivided the SiLAC proteins into seven subgroups (Groups I-VII), of which Group VII contained only sesame LACs. Within the same subgroup, SiLACs exhibit comparable structures and conserved motifs. The promoter region of SiLACs harbors various cis-acting elements that are related to plant growth, phytohormones, and stress responses. Most SiLACs were expressed in the roots and stems, whereas some were expressed specifically in flowers or seeds. RNA-seq analysis revealed that 19 SiLACs exhibited down-regulation and three showed up-regulation in response to drought stress, while 15 SiLACs were down-regulated and four up-regulated under salt stress. Additionally, qRT-PCR analysis showcased that certain SiLAC expression was significantly upregulated as a result of osmotic and salt stress. SiLAC5 and SiLAC17 exhibited the most significant changes in expression under osmotic and salt stresses, indicating that they may serve as potential targets for improving sesame resistance to various stresses. CONCLUSIONS Our study offers a thorough comprehension of LAC gene structure, classification, evolution, and abiotic stress response in sesame plants. Furthermore, we provide indispensable genetic resources for sesame functional characterization to enhance its tolerance to various abiotic stresses.
Collapse
Affiliation(s)
- Jianglong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fengduo Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Muez Berhe
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Tigray Agricultural Research Institute, Humera Agricultural Research Center, P.O. Box 62, Tigray, Ethiopia
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
3
|
Yang H, Xia L, Li J, Jia X, Jia X, Qi Y, Yu Y, Wang W. CsLAC4, regulated by CsmiR397a, confers drought tolerance to the tea plant by enhancing lignin biosynthesis. STRESS BIOLOGY 2024; 4:50. [PMID: 39641904 PMCID: PMC11624182 DOI: 10.1007/s44154-024-00199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Drought is a prevalent abiotic stress that commonly affects the quality and yield of tea. Although numerous studies have shown that lignin accumulation holds significant importance in conferring drought tolerance to tea plants, the underlying molecular regulatory mechanisms governing the tea plant's response to drought remain largely elusive. LACCASEs (LACs), which belong to the class of plant copper-containing polyphenol oxidases, have been widely reported to participate in lignin biosynthesis in plants and are implicated in numerous plant life processes, especially in the context of adverse conditions. In this study, we detected the upregulation of CsLAC4 in response to drought induction. Remarkably, the overexpression of CsLAC4 not only substantially increased the lignin content of transgenic Arabidopsis thaliana but also simulated the development of vascular tissues, consequently leading to a significant enhancement in drought tolerance. Moreover, via dual-luciferase assays and transient overexpression in tea leaves, we revealed that CsLAC4 was negatively regulated by the upstream CsmiR397a. Interestingly, the expression of CsmiR397a was downregulated during drought stress in tea plants. Arabidopsis thaliana overexpressing CsmiR397a showed increased sensitivity to drought stress. By transient overexpression of CsmiR397a and CsLAC4 in tea plant leaves, we verified that CsLAC4, which is regulated by CsmiR397a, conferred drought tolerance to tea plants by enhancing lignin biosynthesis. These findings enhance our understanding of the molecular regulatory mechanisms underlying the response of tea plants to drought stress.
Collapse
Affiliation(s)
- Hongbin Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linxuan Xia
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingshan Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoyu Jia
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyue Jia
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuying Qi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weidong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Zhai T, Wang H, Dong X, Wang S, Xin X, Du J, Guan Q, Jiao H, Yang W, Dong R. Laccase: A Green Biocatalyst Offers Immense Potential for Food Industrial and Biotechnological Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24158-24169. [PMID: 39436678 DOI: 10.1021/acs.jafc.4c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Laccase, a multipurpose biocatalyst, is widely distributed across all kingdoms of life and plays a key role in essential biological processes such as lignin synthesis, degradation, and pigment formation. These functions are critical for fungal growth, plant-pathogen interactions, and maintenance of soil health. Due to its broad substrate specificity, multifunctional nature, and environmentally friendly characteristics, laccase is widely employed as a catalyst in various green chemistry initiatives. With its ability to oxidize a diverse range of phenolic and nonphenolic compounds, laccase has also been found to be useful as a food additive and for assessing food quality parameters. Ongoing advancements in research and technology are continually expanding the recognition of laccase's potential to address global environmental, health, and energy challenges. This review aims to provide critical insights into the applications of laccases in the biotechnology and food industry.
Collapse
Affiliation(s)
- Tingting Zhai
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Hongwei Wang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Xiaomin Dong
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Shu Wang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xin Xin
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Jianfeng Du
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China
| | - Qiuzhu Guan
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Huijun Jiao
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Wei Yang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Ran Dong
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| |
Collapse
|
5
|
Mi H, Zhou Q, Li G, Tao Y, Wang A, Wang P, Yang T, Zhu J, Li Y, Wei C, Liu S. Molecular responses reveal that two glutathione S-transferase CsGSTU8s contribute to detoxification of glyphosate in tea plants (Camellia sinensis). Int J Biol Macromol 2024; 277:134304. [PMID: 39084443 DOI: 10.1016/j.ijbiomac.2024.134304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Tea plant (Camellia sinensis) is an important economical crop that frequently suffers from various herbicides, especially glyphosate. However, the molecular responses and regulatory mechanisms of glyphosate stress in tea plants remain poorly understood. Here, we reported a transcriptome dataset and identified large number of differentially expressed genes (DEGs) under glyphosate exposure. Next, two glutathione S-transferase genes (CsGSTU8-1 and CsGSTU8-2) that upregulated significantly were screened as candidate genes. Tissue-specific expression patterns showed that both CsGSTU8-1 and CsGSTU8-2 had extremely high expression levels in the roots and were predominantly localized in the nucleus and plasma membrane based on subcellular localization. Both were significantly upregulated at different time points under various stressors, including drought, cold, salt, pathogen infections, and SA treatments. An enzymatic activity assay showed that CsGSTU8-1 catalyzes the conjugation of glutathione with 2,4-dinitrochlorobenzene (CDNB). Functional analysis in yeast verified that the two genes significantly contributed to the detoxification of glyphosate, and CsGSTU8-1 had a stronger role in detoxification than CsGSTU8-2. Taken together, these findings provide insights into the molecular responses of tea plants to glyphosate and the functions of CsGSTU8s in glyphosate detoxification, which can be used as a promising genetic resource for improving herbicide resistance in tea cultivars.
Collapse
Affiliation(s)
- Hongzhi Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Qianqian Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Guoqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Yongning Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Aoni Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Pengke Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China.
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, People's Republic of China.
| |
Collapse
|
6
|
Sodhi AS, Bhatia S, Batra N. Laccase: Sustainable production strategies, heterologous expression and potential biotechnological applications. Int J Biol Macromol 2024; 280:135745. [PMID: 39293621 DOI: 10.1016/j.ijbiomac.2024.135745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Laccase is a multicopper oxidase enzyme that target different types of phenols and aromatic amines. The enzyme can be isolated and characterized from microbes, plants and insects. Its ubiquitous nature and delignification ability makes it a valuable tool for research and development. Sustainable production methods are being employed to develop low cost biomanufacturing of the enzyme while achieving high titers. Laccase have significant industrial application ranging from food industry where it can be used for wine stabilization, texture improvement and detection of phenolic compounds in food products, to cosmetics offering benefits such as skin brightening and hair colouring. Dye decolourization/degradation, removal of pharmaceutical products/emerging pollutants and hydrocarbons from wastewater, biobleaching of textile fabrics, biofuel production and delignification of biomass making laccase a promising green biocatalyst. Innovative methods such as using inducers, microbial co-culturing, recombinant DNA technology, protein engineering have pivotal role in developing laccase with tailored properties. Enzyme immobilization using new age compounds including nanoparticles, carbonaceous components, agro-industrial residues enhance activity, stability and reusability. Commercial formulations of laccase have been prepared and readily available for a variety of applications. Certain challenges including production cost, metabolic stress in response to heterologous expression, difficulty in purification needs to be addressed.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India.
| |
Collapse
|
7
|
Cheng T, Ren C, Xu J, Wang H, Wen B, Zhao Q, Zhang W, Yu G, Zhang Y. Genome-wide analysis of the common bean (Phaseolus vulgaris) laccase gene family and its functions in response to abiotic stress. BMC PLANT BIOLOGY 2024; 24:688. [PMID: 39026161 PMCID: PMC11264805 DOI: 10.1186/s12870-024-05385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Laccase (LAC) gene family plays a pivotal role in plant lignin biosynthesis and adaptation to various stresses. Limited research has been conducted on laccase genes in common beans. RESULTS 29 LAC gene family members were identified within the common bean genome, distributed unevenly in 9 chromosomes. These members were divided into 6 distinct subclades by phylogenetic analysis. Further phylogenetic analyses and synteny analyses indicated that considerable gene duplication and loss presented throughout the evolution of the laccase gene family. Purified selection was shown to be the major evolutionary force through Ka / Ks. Transcriptional changes of PvLAC genes under low temperature and salt stress were observed, emphasizing the regulatory function of these genes in such conditions. Regulation by abscisic acid and gibberellins appears to be the case for PvLAC3, PvLAC4, PvLAC7, PvLAC13, PvLAC14, PvLAC18, PvLAC23, and PvLAC26, as indicated by hormone induction experiments. Additionally, the regulation of PvLAC3, PvLAC4, PvLAC7, and PvLAC14 in response to nicosulfuron and low-temperature stress were identified by virus-induced gene silence, which demonstrated inhibition on growth and development in common beans. CONCLUSIONS The research provides valuable genetic resources for improving the resistance of common beans to abiotic stresses and enhance the understanding of the functional roles of the LAC gene family.
Collapse
Affiliation(s)
- Tong Cheng
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Chunyuan Ren
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jinghan Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Huamei Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Bowen Wen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qiang Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Wenjie Zhang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Gaobo Yu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
| | - Yuxian Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| |
Collapse
|
8
|
Ganguly A, Amin S, Al-Amin, Tasnim Chowdhury F, Khan H, Riazul Islam M. Whole genome resequencing unveils low-temperature stress tolerance specific genomic variations in jute (Corchorus sp.). J Genet Eng Biotechnol 2024; 22:100376. [PMID: 38797551 PMCID: PMC11015510 DOI: 10.1016/j.jgeb.2024.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 05/29/2024]
Abstract
Jute (Corchorus sp.), a commercially important and eco-friendly crop, is widely cultivated in Bangladesh, India, and China. Some varieties of this tropical plant such as the Corchorus olitorius. Variety accession no. 2015 (acc. 2015) has been found to be low-temperature tolerant. The current study was designed to explore the genome-wide variations present in the tolerant plant acc. 2015 in comparison to the sensitive farmer popular variety Corchorus olitorius var. O9897 using the whole genome resequencing technique. Among different variations, intergenic Single Nucleotide Polymorphism (SNPs) and Insertion-Deletion (InDels) were found in the highest percentage whereas approximately 3% SNPs and 2% InDels were found in exonic regions in both plants. Gene enrichment analysis indicated the presence of acc. 2015 specific SNPs in the genes encoding peroxidase, ER lumen protein retaining receptor, and hexosyltransferase involved in stress response (GO:0006950) which were not present in sensitive variety O9897. Besides, distinctive copy number variation regions (CNVRs) comprising 120 gene loci were found in acc. 2015 with a gain of function from multiple copy numbers but absent in O9897. Gene ontology analysis revealed these gene loci to possess different receptors like kinases, helicases, phosphatases, transcription factors especially Myb transcription factors, regulatory proteins containing different binding domains, annexin, laccase, acyl carrier protein, potassium transporter, and vesicular transporter proteins that are responsible for low temperature induced adaptation pathways in plants. This work of identifying genomic variations linked to cold stress tolerance traits will help to develop successful markers that will pave the way to develop genetically modified cold-resistant jute lines for year-round cultivation to meet the demand for a sustainable fiber crop economy.
Collapse
Affiliation(s)
- Athoi Ganguly
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Shaheena Amin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, National Institute of Science and Technology, Dhaka, Bangladesh
| | - Al-Amin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Farhana Tasnim Chowdhury
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Haseena Khan
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| | - Mohammad Riazul Islam
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
9
|
Abd El-Latif AS, Zohri ANA, El-Aref HM, Mahmoud GAE. Kinetic studies on optimized extracellular laccase from Trichoderma harzianum PP389612 and its capabilities for azo dye removal. Microb Cell Fact 2024; 23:150. [PMID: 38790055 PMCID: PMC11127416 DOI: 10.1186/s12934-024-02412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Azo dyes represent a common textile dye preferred for its high stability on fabrics in various harsh conditions. Although these dyes pose high-risk levels for all biological forms, fungal laccase is known as a green catalyst for its ability to oxidize numerous dyes. METHODS Trichoderma isolates were identified and tested for laccase production. Laccase production was optimized using Plackett-Burman Design. Laccase molecular weight and the kinetic properties of the enzyme, including Km and Vmax, pH, temperature, and ionic strength, were detected. Azo dye removal efficiency by laccase enzyme was detected for Congo red, methylene blue, and methyl orange. RESULTS Eight out of nine Trichoderma isolates were laccase producers. Laccase production efficiency was optimized by the superior strain T. harzianum PP389612, increasing production from 1.6 to 2.89 U/ml. In SDS-PAGE, purified laccases appear as a single protein band with a molecular weight of 41.00 kDa. Km and Vmax values were 146.12 μmol guaiacol and 3.82 μmol guaiacol/min. Its activity was stable in the pH range of 5-7, with an optimum temperature range of 40 to 50 °C, optimum ionic strength of 50 mM NaCl, and thermostability properties up to 90 °C. The decolorization efficiency of laccase was increased by increasing the time and reached its maximum after 72 h. The highest efficiency was achieved in Congo red decolorization, which reached 99% after 72 h, followed by methylene blue at 72%, while methyl orange decolorization efficiency was 68.5%. CONCLUSION Trichoderma laccase can be used as an effective natural bio-agent for dye removal because it is stable and removes colors very well.
Collapse
Affiliation(s)
| | - Abdel-Naser A Zohri
- Botany and Microbiology Department, Faculty of Science, Assiut University, P.O. 71516, Assiut, Egypt
| | - Hamdy M El-Aref
- Genetics Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | | |
Collapse
|
10
|
Huang F, Lei Y, Duan J, Kang Y, Luo Y, Ding D, Chen Y, Li S. Investigation of heat stress responses and adaptation mechanisms by integrative metabolome and transcriptome analysis in tea plants (Camellia sinensis). Sci Rep 2024; 14:10023. [PMID: 38693343 PMCID: PMC11063163 DOI: 10.1038/s41598-024-60411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
Extreme high temperature has deleterious impact on the yield and quality of tea production, which has aroused the attention of growers and breeders. However, the mechanisms by which tea plant varieties respond to extreme environmental heat is not clear. In this study, we analyzed physiological indices, metabolites and transcriptome differences in three different heat-tolerant tea plant F1 hybrid progenies. Results showed that the antioxidant enzyme activity, proline, and malondialdehyde were significantly decreased in heat-sensitive 'FWS' variety, and the accumulation of reactive oxygen molecules such as H2O2 and O2- was remarkably increased during heat stress. Metabolomic analysis was used to investigate the metabolite accumulation pattern of different varieties in response to heat stress. The result showed that a total of 810 metabolites were identified and more than 300 metabolites were differentially accumulated. Transcriptional profiling of three tea varieties found that such genes encoding proteins with chaperon domains were preferentially expressed in heat-tolerant varieties under heat stress, including universal stress protein (USP32, USP-like), chaperonin-like protein 2 (CLP2), small heat shock protein (HSP18.1), and late embryogenesis abundant protein (LEA5). Combining metabolomic with transcriptomic analyses discovered that the flavonoids biosynthesis pathway was affected by heat stress and most flavonols were up-regulated in heat-tolerant varieties, which owe to the preferential expression of key FLS genes controlling flavonol biosynthesis. Take together, molecular chaperons, or chaperon-like proteins, flavonols accumulation collaboratively contributed to the heat stress adaptation in tea plant. The present study elucidated the differences in metabolite accumulation and gene expression patterns among three different heat-tolerant tea varieties under extreme ambient high temperatures, which helps to reveal the regulatory mechanisms of tea plant adaptation to heat stress, and provides a reference for the breeding of heat-tolerant tea plant varieties.
Collapse
Affiliation(s)
- Feiyi Huang
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Yu Lei
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Jihua Duan
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Yankai Kang
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Yi Luo
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Ding Ding
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Yingyu Chen
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Saijun Li
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China.
| |
Collapse
|
11
|
Yang H, Jia X, Gao T, Gong S, Xia L, Zhang P, Qi Y, Liu S, Yu Y, Wang W. The CsmiR397a- CsLAC17 module regulates lignin biosynthesis to balance the tenderness and gray blight resistance in young tea shoots. HORTICULTURE RESEARCH 2024; 11:uhae085. [PMID: 38799128 PMCID: PMC11116903 DOI: 10.1093/hr/uhae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
Lignin accumulation can enhance the disease resistance of young tea shoots (Camellia sinensis). It also greatly reduces their tenderness, which indirectly affects the quality and yield of tea. Therefore, the regulation of lignin biosynthesis appears to be an effective way to balance tenderness and disease resistance in young tea shoots. In this study, we identified a laccase gene, CsLAC17, that is induced during tenderness reduction and gray blight infection in young tea shoots. Overexpression of CsLAC17 significantly increased the lignin content in transgenic Arabidopsis, enhancing their resistance to gray blight and decreasing stem tenderness. In addition, we found that CsLAC17 was negatively regulated by the upstream CsmiR397a by 5'-RLM-RACE, dual-luciferase assay, and transient expression in young tea shoots. Interestingly, the expression of CsmiR397a was inhibited during tenderness reduction and gray blight infection of young tea shoots. Overexpression of CsmiR397a reduced lignin accumulation, resulting in decreased resistance to gray blight and increased stem tenderness in transgenic Arabidopsis. Furthermore, the transient overexpression of CsmiR397a and CsLAC17 in tea leaves directly confirms the function of the CsmiR397a-CsLAC17 module in lignin biosynthesis and its effect on disease resistance. These results suggest that the CsmiR397a-CsLAC17 module is involved in balancing tenderness and gray blight resistance in young tea shoots by regulating lignin biosynthesis.
Collapse
Affiliation(s)
- Hongbin Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyue Jia
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Gao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siyu Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Linxuan Xia
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peiling Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuying Qi
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuyuan Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weidong Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
12
|
Qiao D, Yang C, Mi X, Tang M, Liang S, Chen Z. Genome-wide identification of tea plant (Camellia sinensis) BAHD acyltransferases reveals their role in response to herbivorous pests. BMC PLANT BIOLOGY 2024; 24:229. [PMID: 38561653 PMCID: PMC10985903 DOI: 10.1186/s12870-024-04867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND BAHD acyltransferases are among the largest metabolic protein domain families in the genomes of terrestrial plants and play important roles in plant growth and development, aroma formation, and biotic and abiotic stress responses. Little is known about the BAHDs in the tea plant, a cash crop rich in secondary metabolites. RESULTS In this study, 112 BAHD genes (CsBAHD01-CsBAHD112) were identified from the tea plant genome, with 85% (98/112) unevenly distributed across the 15 chromosomes. The number of BAHD gene family members has significantly expanded from wild tea plants to the assamica type to the sinensis type. Phylogenetic analysis showed that they could be classified into seven subgroups. Promoter cis-acting element analysis revealed that they contain a large number of light, phytohormones, and stress-responsive elements. Many members displayed tissue-specific expression patterns. CsBAHD05 was expressed at more than 500-fold higher levels in purple tea leaves than in green tea leaves. The genes exhibiting the most significant response to MeJA treatment and feeding by herbivorous pests were primarily concentrated in subgroups 5 and 6. The expression of 23 members of these two subgroups at different time points after feeding by tea green leafhoppers and tea geometrids was examined via qPCR, and the results revealed that the expression of CsBAHD93, CsBAHD94 and CsBAHD95 was significantly induced after the tea plants were subjected to feeding by both pricking and chewing pests. Moreover, based on the transcriptome data for tea plants being fed on by these two pests, a transcriptional regulatory network of different transcription factor genes coexpressed with these 23 members was constructed. CONCLUSIONS Our study provides new insights into the role of BAHDs in the defense response of tea plants, and will facilitate in-depth studies of the molecular function of BAHDs in resistance to herbivorous pests.
Collapse
Affiliation(s)
- Dahe Qiao
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China.
- Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Ministry of Agriculture and Rural Affairs, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China.
| | - Chun Yang
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Xiaozeng Mi
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Mengsha Tang
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Sihui Liang
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Zhengwu Chen
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
13
|
Li D, Zhang H, Zhou Q, Tao Y, Wang S, Wang P, Wang A, Wei C, Liu S. The Laccase Family Gene CsLAC37 Participates in Resistance to Colletotrichum gloeosporioides Infection in Tea Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:884. [PMID: 38592904 PMCID: PMC10975366 DOI: 10.3390/plants13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Fungal attacks have become a major obstacle in tea plantations. Colletotrichum gloeosporioides is one of the most devastating fungal pathogens in tea plantations that can severely affect tea yield and quality. However, the molecular mechanism of resistance genes involved in anthracnose is still largely unknown in tea plants. Here, we found that the laccase gene CsLAC37 was involved in the response to fungal infection based on a transcriptome analysis. The full-length CDS of CsLAC37 was cloned, and its protein sequence had the closest relationship with the Arabidopsis AtLAC15 protein compared to other AtLACs. Tissue-specific expression analysis showed that CsLAC37 had higher expression levels in mature leaves and stems than in the other tissues. Subcellular localization showed that the CsLAC37 protein was predominantly localized in the cell membrane. The expression levels of CsLAC37 were upregulated at different time points under cold, salt, SA, and ABA treatments. qRT-PCR confirmed that CsLAC37 responded to both Pestalotiopsis-like species and C. gloeosporioides infections. Functional validation showed that the hydrogen peroxide (H2O2) content increased significantly, and POD activity decreased in leaves after antisense oligonucleotide (AsODN) treatment compared to the controls. The results demonstrated that CsLAC37 may play an important role in resistance to anthracnose, and the findings provide a theoretical foundation for molecular breeding of tea varieties with resistance to fungal diseases.
Collapse
Affiliation(s)
- Dangqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Qianqian Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Yongning Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Pengke Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Aoni Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| |
Collapse
|