1
|
Pu D, Xu Z, Sun B, Wang Y, Xu J, Zhang Y. Advances in Food Aroma Analysis: Extraction, Separation, and Quantification Techniques. Foods 2025; 14:1302. [PMID: 40282704 PMCID: PMC12027130 DOI: 10.3390/foods14081302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Decoding the aroma composition plays a key role in designing and producing foods that consumers prefer. Due to the complex matrix and diverse aroma compounds of foods, isolation and quantitative analytical methods were systematically reviewed. Selecting suitable and complementary aroma extraction methods based on their characteristics can provide more complete aroma composition information. Multiple mass spectrometry detectors (MS, MS/MS, TOF-MS, IMS) and specialized detectors, including flame ionization detector (FID), electron capture detector (ECD), nitrogen-phosphorus detector (NPD), and flame photometric detector (FPD), are the most important qualitative technologies in aroma identification and quantification. Furthermore, the real-time monitoring of aroma release and perception is an important developing trend in the aroma perception of future food. A combination of artificial intelligence for chromatographic analysis and characteristic databases could significantly improve the qualitative analysis efficiency and accuracy of aroma analysis. External standard method and stable isotope dilution analysis were the most popular quantification methods among the four quantification methods. The combination with flavoromics enables the decoding of aroma profile contributions and the identification of characteristic marker aroma compounds. Aroma analysis has a wide range of applications in the fields of raw materials selection, food processing monitoring, and products quality control.
Collapse
Affiliation(s)
- Dandan Pu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; (D.P.); (Z.X.)
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (B.S.); (Y.W.); (J.X.)
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Zikang Xu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; (D.P.); (Z.X.)
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (B.S.); (Y.W.); (J.X.)
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (B.S.); (Y.W.); (J.X.)
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (B.S.); (Y.W.); (J.X.)
| | - Jialiang Xu
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (B.S.); (Y.W.); (J.X.)
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; (D.P.); (Z.X.)
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (B.S.); (Y.W.); (J.X.)
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Nong Y, Chen Y, Bai Y, He J, Jia H, Zhou S, Cheng G, Cao X, Han J, Huang X, Pervaiz T, Bai X, Wang B. Transcriptomic profiling reveals a regulatory network governing volatile compound biosynthesis in Shine Muscat grapes (Vitis labruscana Baily × V. vinifera L.). PLANTA 2025; 261:66. [PMID: 40000481 DOI: 10.1007/s00425-025-04652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
MAIN CONCLUSION Winter berries accumulated more free volatile compounds than summer berries, and C6 volatile compounds were the main contributors to free volatile compounds. The volatile composition of grapes and wines is important in viticulture, since their aroma is one of the most important determinants of grape fruit quality. The aroma and general quality of grape fruit are influenced by the production of volatile compounds primarily influenced by crop management. In this study, the free and bound volatile compounds were determined using gas chromatography-mass spectrometry (GC-MS), along with the transcriptomic analysis using Shine Muscat grape (Vitis labruscana Baily × V. vinifera L.) of summer and winter berries under two-crop-a-year cultivation in Guangxi. The findings demonstrated that phenols, terpenoids, and alcohols were the main bound volatile compounds in fruits from both seasons, whereas aldehydes, terpenoids, and alcohols were the leading free volatile compounds. Free volatile compound concentrations were substantially higher in winter than summer berries, but bound volatile compound concentrations were much lower. Specifically, the concentrations/constitution of free C6 volatile compounds showed a significant difference between the two seasons and highly correlated with the transcription of three genes involved in the lipoxygenase (LOX) pathway. Winter berries had a higher concentration of aldehydes, which might be ascribed to the higher expression of VvLOXA (VIT_06s0004g01510) and VvHPL1 (VIT_12s0059g01060) genes, while the higher concentration of alcohols in summer berries might be due to the higher expression of alcohol dehydrogenase (VvADH1, VIT_18s0001g15410). Furthermore, two VvBGLU genes (VIT_05s0077g01150, VIT_01s0011g00760) were supposed to regulate the enzymatic hydrolysis of glycoside-bound compounds in grapes. Three transcription factors including MYB60, MYBA1, and GATA16 were highly correlated with VvADH1, and they might play an important role in grape C6 alcohol biosynthesis. The findings may help to reveal a transcriptional regulation network of volatile compounds biosynthetic in grapes and to develop efficient cultivation practices.
Collapse
Affiliation(s)
- Yongkang Nong
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yanbei Chen
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yang Bai
- Guangxi Zhencheng Agricultural Co., Ltd., Nanning, 530105, China
| | - Jianjun He
- Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Haifeng Jia
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Sihong Zhou
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Guo Cheng
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiongjun Cao
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jiayu Han
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Xiaoyun Huang
- Guangxi Zhencheng Agricultural Co., Ltd., Nanning, 530105, China
| | - Tariq Pervaiz
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Xianjin Bai
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Bo Wang
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Martínez L, da Costa BS, Vilanova M. Comparative study of different commercial enzymes on release of glycosylated volatile compounds in white grapes using SPE/GC-MS. Food Chem 2025; 464:141742. [PMID: 39489037 DOI: 10.1016/j.foodchem.2024.141742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Glycosides represent a large source of potential flavor in grape must. Commercial preparations enzymes with glycosidase activity are commonly employed to enhance wine aroma. In this study, we conducted an evaluation of twelve commercial enzymes to assess their effectiveness in releasing volatile compounds from their conjugated forms in a white grape must under laboratory conditions by solid-liquid extraction (SPE) and gas chromatography-mass spectrometry (GC-MS). In this laboratory-level experiment, regardless of the enzymes used, the total concentration of volatile compounds was not statistically affected by the treatments. While the total concentration of volatile compounds remained largely unchanged, four specific volatile groups were significantly affected by the enzyme treatments: acids, alcohols, C13-norisoprenoids, and terpenes. The results also revealed a significant effect of commercial enzymes on individual compounds, which led to a notable increase in the concentration of twenty-one aroma compounds, mainly terpenes. Rapidase Revelation Aroma and Enozym Extra Aroma emerged as the most powerful ones on the must's volatile composition with important ability to release higher concentrations of essential varietal aroma compounds, particularly terpenes and C13-norisoprenoids.
Collapse
Affiliation(s)
- Liliana Martínez
- Grupo de Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza y Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, CONICET-Universidad Nacional de Cuyo, Chacras de Coria, M5528AHB Mendoza, Argentina
| | - Bianca S da Costa
- Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC, UR, GR) Finca La Grajera, 26007 Logroño, La Rioja, Spain
| | - Mar Vilanova
- Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC, UR, GR) Finca La Grajera, 26007 Logroño, La Rioja, Spain.
| |
Collapse
|
4
|
Bvenura C, Kambizi L. Chemical Profile and Potential Applications of Sclerocarya birrea (A.Rich.) Hochst. subsp. caffra (Sond.) Kokwaro Kernel Oils: Analysis of Volatile Compounds and Fatty Acids. Molecules 2024; 29:3815. [PMID: 39202894 PMCID: PMC11487415 DOI: 10.3390/molecules29163815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Sclerocarya birrea kernel volatile compounds and fatty acid methyl esters (FAMEs) from the Bubi district in Matabeleland North province of Zimbabwe were characterised by GC-MS. The volatile compounds of the oil include 65 different compounds from 24 distinct classes, dominated by 13 alcohols and 14 aldehydes (42%). Other classes include carboxylic acids, phenols, sesquiterpenes, lactones, pyridines, saturated fatty acids, ketones, and various hydrocarbons. The kernel oils revealed essential fatty acids such as polyunsaturated (α-linolenic and linoleic acids) and monounsaturated fatty acids (palmitic, palmitoleic, and oleic acids). Notably, oleic acid is the predominant fatty acid at 521.61 mg/g, constituting approximately 73% of the total fatty acids. Linoleic acid makes up 8%, and saturated fatty acids make up about 7%, including significant amounts of stearic (42.45 mg/g) and arachidic (3.46 mg/g) acids. These results validate the use of marula oils in food, pharmaceutical, and health industries, as well as in the multibillion USD cosmetics industry. Therefore, the potential applications of S. berria kernel oils are extensive, necessitating further research and exploration to fully unlock their capabilities.
Collapse
Affiliation(s)
- Callistus Bvenura
- Department of Horticulture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| | - Learnmore Kambizi
- Department of Horticulture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa
| |
Collapse
|
5
|
Piarulli L, Pirolo C, Roseti V, Bellin D, Mascio I, La Notte P, Montemurro C, Miazzi MM. Breeding new seedless table grapevines for a more sustainable viticulture in Mediterranean climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1379642. [PMID: 38645394 PMCID: PMC11027070 DOI: 10.3389/fpls.2024.1379642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 04/23/2024]
Abstract
The growing demand for sustainable and environmentally friendly viticulture is leading to a multiplication of breeding programs aimed at obtaining vines that are resistant to powdery mildew (PM) and downy mildew (DM), the two most damaging vine diseases. In Puglia, the most important Italian region for the production of table grapes, an extensive crossing program was launched in 2015 with 113 crosses, including elite table varieties, seedless varieties, and resistant varieties. The main seedling production parameters were measured for each cross. In particular, berries harvested as well as the number of seeds and seedlings obtained were considered. Approximately 103,119 seedlings were obtained and subjected to marker-assisted selection for seedlessness using the marker VvAGL11 and for resistance to PM and DM with appropriate markers. Approximately one third (32,638) of the progenies were selected as putative seedless and seventeen thousand five hundred-nine (17,509) were transferred to the field for phenotypic evaluation, including 527 seedless individuals putatively resistant, of which 208 confirmed to be resistant to DM, 22 resistant to PM, and 20 individuals that combined resistance and seedlessness traits. The work discusses the effects of parental combinations and other variables in obtaining surviving progeny and pyramiding genes in table grapes and provides useful information for selecting genotypes and increasing the efficiency of breeding programs for seedless disease-resistant grapes.
Collapse
Affiliation(s)
- Luciana Piarulli
- SINAGRI S.r.l. – Spin-Off of the University of Bari Aldo Moro, Bari, Italy
- Rete Italian Variety Club (IVC), Locorotondo, Italy
| | - Costantino Pirolo
- SINAGRI S.r.l. – Spin-Off of the University of Bari Aldo Moro, Bari, Italy
- Rete Italian Variety Club (IVC), Locorotondo, Italy
| | | | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Cinzia Montemurro
- SINAGRI S.r.l. – Spin-Off of the University of Bari Aldo Moro, Bari, Italy
- Rete Italian Variety Club (IVC), Locorotondo, Italy
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Monica Marilena Miazzi
- Rete Italian Variety Club (IVC), Locorotondo, Italy
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
6
|
Qiu Y, Li Y, Wu L, Wei H, Fu J, Chen W, Lin S, Yang S, Zhang R, Shang W, Liao C, Zeng S, Luo Y, Cai W. Analysis of Important Volatile Organic Compounds and Genes Produced by Aroma of Pepper Fruit by HS-SPME-GC/MS and RNA Sequencing. PLANTS (BASEL, SWITZERLAND) 2023; 12:2246. [PMID: 37375872 DOI: 10.3390/plants12122246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Pepper is an important condiment, and its aroma affects its commercial value. In this study, transcriptome sequencing and combined headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to analyze the differentially expressed genes and volatile organic compounds in spicy and non-spicy pepper fruits. Compared with non-spicy fruits, there were 27 up-regulated volatile organic compounds (VOCs) and 3353 up-regulated genes (Up-DEGs) in spicy fruits. The results of KEGG enrichment analysis of the Up-DEGs combined with differential VOCs analysis showed that fatty acid biosynthesis and terpenoid biosynthesis may be the main metabolic pathways for aroma differences between non-spicy and spicy pepper fruits. The expression levels of the fatty acid biosynthesis-related genes FAD, LOX1, LOX5, HPL, and ADH and the key terpene synthesis gene TPS in spicy pepper fruits were significantly higher than those in non-spicy pepper fruits. The differential expression of these genes may be the reason for the different aroma. The results can provide reference for the development and utilization of high-aroma pepper germplasm resources and the breeding of new varieties.
Collapse
Affiliation(s)
- Yinhui Qiu
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Yongqing Li
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Lidong Wu
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Hang Wei
- Institute of Agricultural Quality Standards and Testing Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China
| | - Jianwei Fu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiting Chen
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Shuting Lin
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Zhang
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Wei Shang
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Chengshu Liao
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Shaogui Zeng
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Ying Luo
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Weiwei Cai
- Sanming Academy of Agricultural Sciences, Sanming 365509, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
- College of Horticultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 350002, China
| |
Collapse
|