1
|
Whisnant ED, Keith C, Smieska L, Chia JC, Bekele-Alemu A, Vatamaniuk OK, VanBuren R, Ligaba-Osena A. Biggest of tinies: natural variation in seed size and mineral distribution in the ancient crop tef [ Eragrostis tef (Zucc.) Trotter]. FRONTIERS IN PLANT SCIENCE 2024; 15:1485819. [PMID: 39726428 PMCID: PMC11669528 DOI: 10.3389/fpls.2024.1485819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
Tef [Eragrostis tef (Zucc.) Trotter] is the major staple crop for millions of people in Ethiopia and Eritrea and is believed to have been domesticated several thousand years ago. Tef has the smallest grains of all the cereals, which directly impacts its productivity and presents numerous challenges to its cultivation. In this study, we assessed the natural variation in seed size of 189 tef and 11 accessions of its wild progenitor Indian lovegrass (Eragrostis pilosa (L.) P. Beauv.) and explored the mineral distribution of representative accessions. Our findings revealed significant natural variation in seed size and mineral concentration among both the tef and E. pilosa accessions. We observed significant variation in seed length, seed width, and seed area among the accessions of both Eragrostis spp. we analyzed. Using representative accessions of both species, we also found significant variation in 1000-grain weight. The observed variation in seed size attributes prompted us to use comparative genomics to identify seed size regulating genes based on the well-studied and closely related monocot cereal rice [Oryza sativa (L.)]. Using this approach, we identified putative orthologous genes in the tef genome that belong to a number of key pathways known to regulate seed size in rice. Phylogenetic analysis of putative tef orthologs of ubiquitin-proteasome, G-protein, MAPK, and brassinosteroid (BR)-family genes indicate significant similarity to seed size regulating genes in rice and other cereals. Because tef is known to be more nutrient-dense than other more common cereals such as rice, wheat, and maize, we also studied the mineral concentration of selected accessions using ICP-OES and explored their distribution within the seeds using synchrotron-based X-ray fluorescence (SXRF) microscopy. The findings showed significant variation in seed mineral concentration and mineral distribution among the selected accessions of both Eragrostis spp. This study highlights the natural variation in seed size attributes, mineral concentration, and distribution, while establishing the basis for understanding the genetic mechanisms regulating these traits. We hope our findings will lead to a better understanding of the evolution of tef at the genetic level and for the development of elite tef cultivars to improve seed size, yield, and quality of the grains.
Collapse
Affiliation(s)
- Eric D. Whisnant
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Christian Keith
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Louisa Smieska
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, United States
| | - Ju-Chen Chia
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Olena K. Vatamaniuk
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
2
|
Ramírez Gonzales LY, Cannarozzi G, Jäggi L, Assefa K, Chanyalew S, Dell'Acqua M, Tadele Z. The role of omics in improving the orphan crop tef. Trends Genet 2024; 40:449-461. [PMID: 38599921 DOI: 10.1016/j.tig.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Tef or teff [Eragrostis tef (Zucc.) Trotter] is a cereal crop indigenous to the Horn of Africa, where it is a staple food for a large population. The popularity of tef arises from its resilience to environmental stresses and its nutritional value. For many years, tef has been considered an orphan crop, but recent research initiatives from across the globe are helping to unravel its undisclosed potential. Advanced omics tools and techniques have been directed toward the exploration of tef's diversity with the aim of increasing its productivity. In this review, we report on the most recent advances in tef omics that brought the crop into the spotlight of international research.
Collapse
Affiliation(s)
| | - Gina Cannarozzi
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland
| | - Lea Jäggi
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland
| | - Kebebew Assefa
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | - Solomon Chanyalew
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | | | - Zerihun Tadele
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
3
|
Bekele-Alemu A, Ligaba-Osena A. Correction: Comprehensive in silico analysis of the underutilized crop tef (Eragrostis tef (Zucc.) Trotter) genome reveals drought tolerance signatures. BMC PLANT BIOLOGY 2023; 23:561. [PMID: 37964207 PMCID: PMC10647060 DOI: 10.1186/s12870-023-04601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Affiliation(s)
- Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA.
| |
Collapse
|