Salem F, ElGamal A, Tang X, Yang J, Kong W. Transcriptional Dynamics of Receptor-Based Genes Reveal Immunity Hubs in Rice Response to
Magnaporthe oryzae Infection.
Int J Mol Sci 2025;
26:4618. [PMID:
40429762 PMCID:
PMC12111697 DOI:
10.3390/ijms26104618]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Rice blast caused by Magnaporthe oryzae (MOR) reigns as the top-most devastating disease affecting global rice production. Pattern-triggered immunity (PTI) is crucial for mitigating plant responses to pathogens. However, the transcriptional dynamics of PTI-related genes in rice response to MOR infection remain largely unexplored. In this study, we performed a meta-analysis of 201 RNA sequencing and 217 microarray datasets to investigate the transcriptional dynamics of rice under MOR infection at various infection stages. The transcriptional dynamics of extracellular/cytoplasmic receptor kinase genes (RLKs, RLCKs, WAKs) and downstream signaling intermediates, including mitogen-activated protein kinases (MAPKs) and Ca2+-related signaling genes, were identified as immunity hubs for PTI. Extracellular/cytoplasmic receptors were predominantly induced, in contrast to a marked decrease in the repression of these genes. Notably, a maximum of 141 and 154 receptor-based genes were frequently induced from the microarray and RNA-seq datasets, respectively. Moreover, 31 genes were consistently induced across all the transcriptomic profiles, highlighting their pivotal role in PTI-activating immunity regulation in rice under MOR stress. Furthermore, protein-protein interaction (PPI) analysis revealed that cytoplasmic receptor-based genes (RLCKs) and MAPK(K)s were highly interconnected. Among them, four core MAPKK genes, including SMG1, MKK1, MKK6, and MPKK10.2, were identified as the most frequently interconnected with receptor-based genes or other MAPKs under MOR infection, suggesting their critical role as intermediates during downstream signaling networks in response to MOR infection. Together, our comprehensive analysis provides insights into the transcriptional dynamics of receptor-based genes and downstream signaling intermediates as core PTI-related genes that can play crucial roles in modulating rice immune responses to MOR infection.
Collapse