1
|
Ding B, Peterzan M, Mózes FE, Rider OJ, Valkovič L, Rodgers CT. Water-suppression cycling 3-T cardiac 1 H-MRS detects altered creatine and choline in patients with aortic or mitral stenosis. NMR IN BIOMEDICINE 2021; 34:e4513. [PMID: 33826181 PMCID: PMC8243349 DOI: 10.1002/nbm.4513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 05/06/2023]
Abstract
Cardiac proton spectroscopy (1 H-MRS) is widely used to quantify lipids. Other metabolites (e.g. creatine and choline) are clinically relevant but more challenging to quantify because of their low concentrations (approximately 10 mmol/L) and because of cardiac motion. To quantify cardiac creatine and choline, we added water-suppression cycling (WSC) to two single-voxel spectroscopy sequences (STEAM and PRESS). WSC introduces controlled residual water signals that alternate between positive and negative phases from transient to transient, enabling robust phase and frequency correction. Moreover, a particular weighted sum of transients eliminates residual water signals without baseline distortion. We compared WSC and the vendor's standard 'WET' water suppression in phantoms. Next, we tested repeatability in 10 volunteers (seven males, three females; age 29.3 ± 4.0 years; body mass index [BMI] 23.7 ± 4.1 kg/m2 ). Fat fraction, creatine concentration and choline concentration when quantified by STEAM-WET were 0.30% ± 0.11%, 29.6 ± 7.0 μmol/g and 7.9 ± 6.7 μmol/g, respectively; and when quantified by PRESS-WSC they were 0.30% ± 0.15%, 31.5 ± 3.1 μmol/g and 8.3 ± 4.4 μmol/g, respectively. Compared with STEAM-WET, PRESS-WSC gave spectra whose fitting quality expressed by Cramér-Rao lower bounds improved by 26% for creatine and 32% for choline. Repeatability of metabolite concentration measurements improved by 72% for creatine and 40% for choline. We also compared STEAM-WET and PRESS-WSC in 13 patients with severe symptomatic aortic or mitral stenosis indicated for valve replacement surgery (10 males, three females; age 75.9 ± 6.3 years; BMI 27.4 ± 4.3 kg/m2 ). Spectra were of analysable quality in eight patients for STEAM-WET, and in nine for PRESS-WSC. We observed comparable lipid concentrations with those in healthy volunteers, significantly reduced creatine concentrations, and a trend towards decreased choline concentrations. We conclude that PRESS-WSC offers improved performance and reproducibility for the quantification of cardiac lipids, creatine and choline concentrations in healthy volunteers at 3 T. It also offers improved performance compared with STEAM-WET for detecting altered creatine and choline concentrations in patients with valve disease.
Collapse
Affiliation(s)
- Belinda Ding
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| | - Mark Peterzan
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| | - Ferenc E. Mózes
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| | - Oliver J. Rider
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
- Department of Imaging Methods, Institute of Measurement ScienceSlovak Academy of SciencesBratislavaSlovakia
| | - Christopher T. Rodgers
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR)University of OxfordOxfordUK
| |
Collapse
|
2
|
Gastl M, Peereboom SM, Gotschy A, Fuetterer M, von Deuster C, Boenner F, Kelm M, Schwotzer R, Flammer AJ, Manka R, Kozerke S. Myocardial triglycerides in cardiac amyloidosis assessed by proton cardiovascular magnetic resonance spectroscopy. J Cardiovasc Magn Reson 2019; 21:10. [PMID: 30700314 PMCID: PMC6354424 DOI: 10.1186/s12968-019-0519-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cardiac involvement of amyloidosis leads to left-ventricular (LV) wall thickening with progressive heart failure requiring rehospitalization. Cardiovascular magnetic resonance (CMR) is a valuable tool to non-invasively assess myocardial thickening as well as structural changes. Proton CMR spectroscopy (1H-CMRS) additionally allows assessing metabolites including triglycerides (TG) and total creatine (CR). However, opposing results exist regarding utilization of these metabolites in LV hypertrophy or thickening. Therefore, the aim of this study was to measure metabolic alterations using 1H-CMRS in a group of patients with thickened myocardium caused by cardiac amyloidosis. METHODS 1H-CMRS was performed on a 1.5 T system (Achieva, Philips Healthcare, Best, The Netherlands) using a 5-channel receive coil in 11 patients with cardiac amyloidosis (60.5 ± 11.4 years, 8 males) and 11 age- and gender-matched controls (63.2 ± 8.9 years, 8 males). After cardiac morphology and function assessment, proton spectra from the interventricular septum (IVS) were acquired using a double-triggered PRESS sequence. Post-processing was performed using a customized reconstruction pipeline based on ReconFrame (GyroTools LLC, Zurich, Switzerland). Spectra were fitted in jMRUI/AMARES and the ratios of triglyceride-to-water (TG/W) and total creatine-to-water (CR/W) were calculated. RESULTS Besides an increased LV mass and a thickened IVS concomitant to the disease characteristics, patients with cardiac amyloidosis presented with decreased global longitudinal (GLS) and circumferential (GCS) strain. LV ejection fraction was preserved relative to controls (60.0 ± 13.2 vs. 66.1 ± 4.3%, p = 0.17). Myocardial TG/W ratios were significantly decreased compared to controls (0.53 ± 0.23 vs. 0.80 ± 0.26%, p = 0.015). CR/W ratios did not show a difference between both groups, but a higher standard deviation in patients with cardiac amyloidosis was observed. Pearson correlation revealed a negative association between elevated LV mass and TG/W (R = - 0.59, p = 0.004) as well as GCS (R = - 0.48, p = 0.025). CONCLUSIONS A decrease in myocardial TG/W can be detected in patients with cardiac amyloidosis alongside impaired cardiac function with an association to the degree of myocardial thickening. Accordingly, 1H-CMRS may provide an additional diagnostic tool to gauge progression of cardiac amyloidosis along with standard imaging sequences. TRIAL REGISTRATION EK 2013-0132.
Collapse
Affiliation(s)
- Mareike Gastl
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department Cardiology, Pneumology and Angiology, Heinrich Heine University, Düsseldorf, Germany
| | - Sophie M. Peereboom
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Alexander Gotschy
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Florian Boenner
- Department Cardiology, Pneumology and Angiology, Heinrich Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Department Cardiology, Pneumology and Angiology, Heinrich Heine University, Düsseldorf, Germany
| | - Rahel Schwotzer
- Comprehensive Cancer Center Zürich, University Hospital Zurich, Zurich, Switzerland
| | - Andreas J. Flammer
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Robert Manka
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|