1
|
Yang G, Alarcon C, Chanfreau C, Lee NH, Friedman P, Nutescu E, Tuck M, O'Brien T, Gong L, Klein TE, Chang K, Tsao PS, Meltzer DO, Lynch JA, Million Veteran Program, Tuteja S, Perera MA. Investigation of Genomic and Transcriptomic Risk Factors of Clopidogrel Response in African Americans. Clin Pharmacol Ther 2025; 117:1313-1324. [PMID: 39868839 PMCID: PMC11993291 DOI: 10.1002/cpt.3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
Clopidogrel, an anti-platelet drug, is used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic events, with African Americans (AA) suffering disproportionately. The aim of this study was to discover novel biomarkers of clopidogrel resistance in African Americans using genome and transcriptome data. We conducted a genome-wide association study (GWAS), including local ancestry adjustment, in 141 AA on clopidogrel to identify genetic associations with high on-treatment platelet reactivity (HTPR), with validation of genome-wide significant and suggestive loci in an independent cohort of AA clopidogrel patients (N = 823) from the Million Veteran's Program (MVP) along with in vitro functional analysis. We performed differential gene expression (DGE) analysis in whole blood to identify transcriptomic predictors of response, followed by functional validation in MEG-01 cells. GWAS identified one signal on Chromosome 7 as significantly associated with increasing risk of HTPR. The lead single-nucleotide polymorphism (SNP), rs7807369, within thrombospondin 7A (THSD7A) was associated with an increased risk of HTPR (odds ratio (OR) = 4.02, P = 4.56 × 10-9). Higher THSD7A gene expression was associated with HTPR in an independent cohort of clopidogrel-treated patients (P = 0.004) and carrying a risk allele showed increased gene expression in primary human endothelial cells. Notably, the CYP2C19*2 variants showed no association with clopidogrel response in the discovery or MVP cohorts. DGE analysis identified an association with decreased LAIR1 and AP3B2 expression to HTPR. LAIR1 knockdown in MEG-01 cells resulted in increased expression of SYK and AKT1, suggesting an inhibitory role of LAIR1 in the Glycoprotein VI pathway. In summary, these findings suggest that other variants and genes outside of CYP2C19 star alleles play an important role in clopidogrel response in AA.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Center for Applied BioinformaticsSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Cristina Alarcon
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Catherine Chanfreau
- VA Informatics and Computing Infrastructure (VINCI)VA Salt Lake City Health Care SystemSalt Lake CityUtahUSA
| | - Norman H. Lee
- Department of Pharmacology and PhysiologyGeorge Washington UniversityWashingtonDCUSA
- GW Cancer CenterGeorge Washington UniversityWashington, DCUSA
| | - Paula Friedman
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Edith Nutescu
- Department of Pharmacy PracticeRetzky College of Pharmacy, University of Illinois ChicagoChicagoIllinoisUSA
| | - Matthew Tuck
- Washington DC VA Medical CenterWashingtonDCUSA
- The George Washington UniversityWashingtonDCUSA
| | - Travis O'Brien
- Department of Pharmacology and PhysiologyGeorge Washington UniversityWashingtonDCUSA
| | - Li Gong
- Department of Biomedical Data ScienceStanford UniversityStanfordCaliforniaUSA
| | - Teri E. Klein
- Department of Biomedical Data Science and Department of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Kyong‐Mi Chang
- Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Philip S. Tsao
- VA Palo Alto Healthcare System and Stanford UniversityPalo AltoCaliforniaUSA
| | - David O. Meltzer
- Section of Hospital Medicine, Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
| | - Julie A. Lynch
- VA Informatics and Computing Infrastructure (VINCI)VA Salt Lake City Health Care SystemSalt Lake CityUtahUSA
| | | | - Sony Tuteja
- Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Minoli A. Perera
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
2
|
Ta Anh H, Nguyen Duy T, Bui Duc T, Hoang Van T, Nguyen Oanh O, Luong Cong T, Truong Dinh C. Association of P2RY12 Gene Variants and Non-Genetic Factors With Clopidogrel Responsiveness in Vietnamese Patients After Percutaneous Coronary Intervention: A Cross-Sectional Study. J Clin Lab Anal 2025; 39:e70003. [PMID: 39927599 PMCID: PMC11904810 DOI: 10.1002/jcla.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Clopidogrel response varies significantly among individuals due to multiple influencing factors. This study aimed to investigate the associations between P2RY12 gene variants, non-genetic factors, and platelet aggregation in patients undergoing clopidogrel therapy and percutaneous coronary intervention. METHODS We conducted a cross-sectional descriptive study involving 171 patients who successfully underwent coronary artery stenting and were treated with clopidogrel at two military hospitals in Vietnam. Platelet aggregation was assessed using the light transmission aggregometry (LTA) method, with clopidogrel resistance (CR) defined as maximal platelet aggregation > 50%. P2RY12 genetic polymorphisms (C34T-rs6785930 and G52T-rs6809699) were genotyped using Sanger sequencing. RESULTS The allele frequencies were 74.56% (C) and 25.44% (T) for P2RY12 C34T, and 88.30% (G) and 11.70% (T) for P2RY12 G52T. Platelet aggregation progressively increased across the GG, GT, and TT genotypes of P2RY12 G52T (p = 0.03), with patients carrying the TT genotype exhibiting significantly higher platelet aggregation compared to other genotypes (p = 0.01). Among non-genetic factors, proton pump inhibitor (PPI) intake was associated with a significant increase in platelet aggregation (p = 0.03). The prevalence of clopidogrel resistance (CR) was 43.86%. Multivariate logistic regression analysis identified the T allele of P2RY12 C34T, reduced estimated glomerular filtration rate (eGFR), and PPI intake as significant risk factors for CR (OR = 2.24, 2.49, 4.01; p = 0.02, 0.049, 0.01, respectively). CONCLUSIONS The T allele of P2RY12 C34T was associated with an increased risk of CR. Among non-genetic factors, PPI intake significantly elevated platelet aggregation and, along with reduced eGFR, contributed to a higher risk of CR.
Collapse
Affiliation(s)
- Hoang Ta Anh
- Cardiovascular Center, Military Hospital 103Vietnam Military Medical UniversityHanoiVietnam
- Cardiovascular Intervention Department175 Military HospitalHo Chi Minh CityVietnam
| | - Toan Nguyen Duy
- Cardiovascular Center, Military Hospital 103Vietnam Military Medical UniversityHanoiVietnam
| | - Thanh Bui Duc
- Cardiovascular Intervention Department175 Military HospitalHo Chi Minh CityVietnam
| | - Tong Hoang Van
- Institute of Biomedicine and PharmacyVietnam Military Medical UniversityHanoiVietnam
| | - Oanh Nguyen Oanh
- Cardiovascular Center, Military Hospital 103Vietnam Military Medical UniversityHanoiVietnam
| | - Thuc Luong Cong
- Cardiovascular Center, Military Hospital 103Vietnam Military Medical UniversityHanoiVietnam
| | - Cam Truong Dinh
- Cardiovascular Intervention Department175 Military HospitalHo Chi Minh CityVietnam
| |
Collapse
|
3
|
Thompson MD, Percy ME, Cole DEC, Bichet DG, Hauser AS, Gorvin CM. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit Rev Clin Lab Sci 2024; 61:317-346. [PMID: 38497103 DOI: 10.1080/10408363.2023.2286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Maire E Percy
- Departments of Physiology and Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel G Bichet
- Department of Physiology and Medicine, Hôpital du Sacré-Coeur, Université de Montréal, QC, Canada
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
4
|
Kazemi Asl S, Rahimzadegan M, Kazemi Asl A. Pharmacogenomics-based systematic review of coronary artery disease based on personalized medicine procedure. Heliyon 2024; 10:e28983. [PMID: 38601677 PMCID: PMC11004819 DOI: 10.1016/j.heliyon.2024.e28983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Background Coronary artery disease (CAD) is the most common reason for mortality and disability-adjusted life years (DALYs) lost globally. This study aimed to suggest a new gene list for the treatment of CAD by a systematic review of bioinformatics analyses of pharmacogenomics impacts of potential genes and variants. Methods PubMed search was filtered by the title including Coronary Artery Disease during 2020-2023. To find the genes with pharmacogenetic impact on the CAD, additional filtrations were considered according to the variant annotations. Protein-Protein Interactions (PPIs), Gene-miRNA Interactions (GMIs), Protein-Drug Interactions (PDIs), and variant annotation assessments (VAAs) performed by STRING-MODEL (ver. 12), Cytoscape (ver. 3.10), miRTargetLink.2., NetworkAnalyst (ver 0.3.0), and PharmGKB. Results Results revealed 5618 publications, 1290 papers were qualified, and finally, 650 papers were included. 4608 protein-coding genes were extracted, among them, 1432 unique genes were distinguished and 530 evidence-based repeated genes remained. 71 genes showed a pharmacogenetics-related variant annotation in at least (entirely 6331 annotations). Variant annotation assessment (VAA) showed 532 potential variants for the final report, and finally, the concluding PGs list represented 175 variants. Based on the function and MAF, 57 nonsynonymous variants of 29 Pharmacogenomics-related genes were associated with CAD. Conclusion Conclusively, evaluating circulating miR33a in individuals' plasma with CAD, and genotyping of rs2230806, rs2230808, rs2487032, rs12003906, rs2472507, rs2515629, and rs4149297 (ABCA1 variants) lead to precisely prescribing of well-known drugs. Also, the findings of this review can be used in both whole-genome sequencing (WGS) and whole-exome sequencing (WES) analysis in the prognosis and diagnosis of CAD.
Collapse
Affiliation(s)
- Siamak Kazemi Asl
- Deputy of Education, Ministry of Health and Medical Education, Tehran, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Kazemi Asl
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Khasawneh LQ, Alsafar H, Alblooshi H, Allam M, Patrinos GP, Ali BR. The diversity and clinical implications of genetic variants influencing clopidogrel bioactivation and response in the Emirati population. Hum Genomics 2024; 18:2. [PMID: 38173046 PMCID: PMC10765826 DOI: 10.1186/s40246-023-00568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Clopidogrel is a widely prescribed prodrug that requires activation via specific pharmacogenes to exert its anti-platelet function. Genetic variations in the genes encoding its transporter, metabolizing enzymes, and target receptor lead to variability in its activation and platelet inhibition and, consequently, its efficacy. This variability increases the risk of secondary cardiovascular events, and therefore, some variations have been utilized as genetic biomarkers when prescribing clopidogrel. METHODS Our study examined clopidogrel-related genes (CYP2C19, ABCB1, PON1, and P2Y12R) in a cohort of 298 healthy Emiratis individuals. The study used whole exome sequencing (WES) data to comprehensively analyze pertinent variations of these genes, including their minor allele frequencies, haplotype distribution, and their resulting phenotypes. RESULTS Our data shows that approximately 37% (n = 119) of the cohort are likely to benefit from the use of alternative anti-platelet drugs due to their classification as intermediate or poor CYP2C19 metabolizers. Additionally, more than 50% of the studied cohort exhibited variants in ABCB1, PON1, and P2YR12 genes, potentially influencing clopidogrel's transport, enzymatic clearance, and receptor performance. CONCLUSIONS Recognizing these alleles and genotype frequencies may explain the clinical differences in medication response across different ethnicities and predict adverse events. Our findings underscore the need to consider genetic variations in prescribing clopidogrel, with potential implications for implementing personalized anti-platelet therapy among Emiratis based on their genetic profiles.
Collapse
Affiliation(s)
- Lubna Q Khasawneh
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Habiba Alsafar
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hiba Alblooshi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
- School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
6
|
Yang G, Alarcon C, Chanfreau C, Lee NH, Friedman P, Nutescu E, Tuck M, O'Brien T, Gong L, Klein TE, Chang KM, Tsao PS, Meltzer DO, Tuteja S, Perera MA. Investigation of genomic and transcriptomic risk factors in clopidogrel response in African Americans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299140. [PMID: 38106031 PMCID: PMC10723512 DOI: 10.1101/2023.12.05.23299140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Clopidogrel, an anti-platelet drug, used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic episodes, with African Americans suffering disproportionately. The aim of this study was to identify biomarkers of clopidogrel resistance in African American patients. We conducted a genome-wide association study, including local ancestry adjustment, in 141 African Americans on clopidogrel to identify associations with high on-treatment platelet reactivity (HTPR). We validated genome-wide and suggestive hits in an independent cohort of African American clopidogrel patients (N = 823) from the Million Veteran's Program (MVP) along with in vitro functional follow up. We performed differential gene expression (DGE) analysis in whole blood with functional follow-up in MEG-01 cells. We identified rs7807369, within thrombospondin 7A (THSD7A), as significantly associated with increasing risk of HTPR (p = 4.56 × 10-9). Higher THSD7A expression was associated with HTPR in an independent gene expression cohort of clopidogrel treated patients (p = 0.004) and supported by increased gene expression on THSD7A in primary human endothelial cells carrying the risk haplotype. Two SNPs (rs1149515 and rs191786) were validated in the MVP cohort. DGE analysis identified an association with decreased LAIR1 expression to HTPR. LAIR1 knockdown in a MEG-01 cells resulted in increased expression of SYK and AKT1, suggesting an inhibitory role of LAIR1 in the Glycoprotein VI pathway. Notably, the CYP2C19 variants showed no association with clopidogrel response in the discovery or MVP cohorts. In summary, these finding suggest that other variants outside of CYP2C19 star alleles play an important role in clopidogrel response in African Americans.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| | - Cristina Alarcon
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| | | | - Norman H Lee
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street NW, Washington, DC, 20037, USA
| | - Paula Friedman
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| | - Edith Nutescu
- Department of Pharmacy Practice and Center for Pharmacoepidemiology and Pharmacoeconomic Research, University of Illinois Chicago, College of Pharmacy, Chicago, IL
| | - Matthew Tuck
- Washington DC VA Medical Center, Washington, DC and The George Washington University, Washington, DC
| | - Travis O'Brien
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street NW, Washington, DC, 20037, USA
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, CA
| | - Teri E Klein
- Department of Biomedical Data Science and Department of Medicine, Stanford University, Stanford, CA
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Philip S Tsao
- VA Palo Alto Healthcare System and Stanford University, Palo Alto, CA
| | - David O Meltzer
- Section of Hospital Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Sony Tuteja
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Minoli A Perera
- Department of Pharmacology, Center for Pharmacogenomics, Fienberg School of Medicine, Northwestern University, Chicago IL
| |
Collapse
|