1
|
Biswas S, Kanodia R, Seervi S, Kaur R, Shukla S, Singh S, Banerjee J, Banerjee S. Portrayal of the complex molecular landscape of multidrug resistance in gastric cancer: Unveiling the potential targets. Exp Cell Res 2025; 449:114580. [PMID: 40306607 DOI: 10.1016/j.yexcr.2025.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Gastric cancer (GC) is an aggressive malignancy among all Gastrointestinal cancer (GIC) types. Worldwide, among all cancer types, gastric cancer incidence and related mortality remain in fifth position. Multidrug resistance (MDR) in GC presents a major challenge to chemotherapy, and it significantly affects patient survival. A better understanding of the dynamic interaction of cellular factors contributing to MDR phenotype, e.g., the presence and expression of variants of MDR-related genes, including various drug-detoxifying and drug-efflux transporters, and expression of regulatory ncRNAs affecting the expression of MDR-related genes, is required to comprehend the molecular mechanisms for MDR development in GCs. This review article provides a holistic discussion of the cellular factors involved in the MDR development in GC cells, i.e., their roles and cross-talk between specific molecules that give rise to drug-sensitive and drug-resistant phenotypes. Moreover, the pharmacological perspective of drug resistance and the underlying biological processes that allow the escape of GC cells from the cytotoxic effects of drugs have also been discussed. Additionally, this review article provides an in-depth discussion on most potential candidates that can serve as MDR biomarkers in GIC cancer and the growing research interest in non-coding RNAs (ncRNAs) in GC. Notably, the miRNAs, circRNAs, and lncRNAs are not only emerging as crucial prognostic biomarkers of MDR in gastric cancers but also as potential targets for personalized medicine to combat the MDR challenge in GC patients.
Collapse
Affiliation(s)
- Siddhant Biswas
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Riya Kanodia
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Suman Seervi
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Rajinder Kaur
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Sakshi Shukla
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Juni Banerjee
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India.
| | - Shuvomoy Banerjee
- School of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
2
|
Wang W, Liu X, Zhao L, Jiang K, Yu Z, Yang R, Zhou W, Cui J, Liang T. FBXW7 in gastrointestinal cancers: from molecular mechanisms to therapeutic prospects. Front Pharmacol 2024; 15:1505027. [PMID: 39749199 PMCID: PMC11694028 DOI: 10.3389/fphar.2024.1505027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
F-box and WD repeat domain-containing 7 (FBXW7), formerly known as hCdc4, hAGO Fbw7, or SEL10, plays a specific recognition function in SCF-type E3 ubiquitin ligases. FBXW7 is a well-established cancer suppressor gene that specifically controls proteasomal degradation and destruction of many key oncogenic substrates. The FBXW7 gene is frequently abnormal in human malignancies especially in gastrointestinal cancers. Accumulating evidence reveals that mutations and deletions of FBXW7 are participating in the occurrence, progression and treatment resistance of human gastrointestinal cancers. Considering the current therapeutic challenges faced by gastrointestinal cancers, elucidating the biological function and molecular mechanism of FBXW7 can provide new perspectives and references for future personalized treatment strategies. In this review, we elucidate the key molecular mechanisms by which FBXW7 and its substrates are involved in gastrointestinal cancers. Furthermore, we discuss the consequences of FBXW7 loss or dysfunction in tumor progression and underscore its potential as a prognostic and therapeutic biomarker. Lastly, we propose potential therapeutic strategies targeting FBXW7 to guide the precision treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Yang Y, Xie Q, Hu C, Xu J, Chen L, Li Y, Luo C. F-box proteins and gastric cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Int J Med Sci 2024; 21:1575-1588. [PMID: 38903918 PMCID: PMC11186432 DOI: 10.7150/ijms.91584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy characterized by significant morbidity and mortality, yet its underlying pathogenesis remains elusive. The etiology of GC is multifaceted, involving the activation of oncogenes and the inactivation of antioncogenes. The ubiquitin-proteasome system (UPS), responsible for protein degradation and the regulation of physiological and pathological processes, emerges as a pivotal player in GC development. Specifically, the F-box protein (FBP), an integral component of the SKP1-Cullin1-F-box protein (SCF) E3 ligase complex within the UPS, has garnered attention for its prominent role in carcinogenesis, tumor progression, and drug resistance. Dysregulation of several FBPs has recently been observed in GC, underscoring their significance in disease progression. This comprehensive review aims to elucidate the distinctive characteristics of FBPs involved in GC, encompassing their impact on cell proliferation, apoptosis, invasive metastasis, and chemoresistance. Furthermore, we delve into the emerging role of FBPs as downstream target proteins of non-coding RNAs(ncRNAs) in the regulation of gastric carcinogenesis, outlining the potential utility of FBPs as direct therapeutic targets or advanced therapies for GC.
Collapse
Affiliation(s)
- Yanzhen Yang
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Qu Xie
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Can Hu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Jingli Xu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Lei Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Yuan Li
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Cong Luo
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| |
Collapse
|
4
|
Zhang C, Pan G, Qin JJ. Role of F-box proteins in human upper gastrointestinal tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189035. [PMID: 38049014 DOI: 10.1016/j.bbcan.2023.189035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Protein ubiquitination and degradation is an essential physiological process in almost all organisms. As the key participants in this process, the E3 ubiquitin ligases have been widely studied and recognized. F-box proteins, a crucial component of E3 ubiquitin ligases that regulates diverse biological functions, including cell differentiation, proliferation, migration, and apoptosis by facilitating the degradation of substrate proteins. Currently, there is an increasing focus on studying the role of F-box proteins in cancer. In this review, we present a comprehensive overview of the significant contributions of F-box proteins to the development of upper gastrointestinal tumors, highlighting their dual roles as both carcinogens and tumor suppressors. We delve into the molecular mechanisms underlying the involvement of F-box proteins in upper gastrointestinal tumors, exploring their interactions with specific substrates and their cross-talks with other key signaling pathways. Furthermore, we discuss the implications of F-box proteins in radiotherapy resistance in the upper gastrointestinal tract, emphasizing their potential as clinical therapeutic and prognostic targets. Overall, this review provides an up-to-date understanding of the intricate involvement of F-box proteins in human upper gastrointestinal tumors, offering valuable insights for the identification of prognostic markers and the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Che Zhang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jiang-Jiang Qin
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
5
|
Sun J, Bai YK, Fan ZG. Role of FBXW7 expression in gastric cancer: Meta‑analysis and bioinformatics analysis. Oncol Lett 2023; 25:184. [PMID: 37113395 PMCID: PMC10126736 DOI: 10.3892/ol.2023.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/24/2023] [Indexed: 04/29/2023] Open
Abstract
F-box/WD repeat domain-containing 7 (FBXW7, also known as CDC4) is a member of the F-box protein family, which is a component of the E3 ubiquitin ligase complex. There is an association between expression of FBXW7 and the prognosis of gastric cancer. Therefore, the search for novel tumor biomarkers is key to predict the occurrence, recurrence and metastasis of gastric cancer. In the present study, systematic meta-analysis and bioinformatics analysis were performed to determine the expression levels of prognostic marker FBXW7 in gastric cancer. A literature search was conducted on August 10, 2022, using PubMed, SinoMed, Wanfang data and China National Knowledge Infrastructure databases. The meta-analysis included six studies and showed that the expression of FBXW7 was significantly downregulated in gastric cancer compared with normal mucosal tissues (P<0.05). FBXW7 expression was positively associated with lymph node metastasis, TNM stage and differentiation (P<0.05). According to the Oncomine database, FBXW7 mRNA expression was higher in gastric cancer than in normal tissue (P<0.05). Kaplan-Meier plots showed that FBXW7 mRNA expression was positively associated with the overall and progression-free survival of patients with gastric cancer. According to the UALCAN and Gene Expression Profiling Interactive Analysis databases, FBXW7 expression was downregulated in gastric cancer compared with normal tissue. FBXW7 may be involved in the entire process of gastric carcinogenesis and its low expression may make it a potential marker for the prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Jing Sun
- Department of Medical Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, Shaanxi 723000, P.R. China
| | - Yang-Kai Bai
- Department of Urology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, P.R. China
| | - Zhi-Gang Fan
- Department of Medical Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong, Shaanxi 723000, P.R. China
- Correspondence to: Professor Zhi-Gang Fan, Department of Medical Oncology, Affiliated 3201 Hospital of Xi'an Jiaotong University, 783 Tianhan Avenue, Hantai, Hanzhong, Shaanxi 723000, P.R. China, E-mail:
| |
Collapse
|
6
|
Shen W, Zhou Q, Peng C, Li J, Yuan Q, Zhu H, Zhao M, Jiang X, Liu W, Ren C. FBXW7 and the Hallmarks of Cancer: Underlying Mechanisms and Prospective Strategies. Front Oncol 2022; 12:880077. [PMID: 35515121 PMCID: PMC9063462 DOI: 10.3389/fonc.2022.880077] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7, a member of the F-box protein family within the ubiquitin–proteasome system, performs an indispensable role in orchestrating cellular processes through ubiquitination and degradation of its substrates, such as c-MYC, mTOR, MCL-1, Notch, and cyclin E. Mainly functioning as a tumor suppressor, inactivation of FBXW7 induces the aberrations of its downstream pathway, resulting in the occurrence of diseases especially tumorigenesis. Here, we decipher the relationship between FBXW7 and the hallmarks of cancer and discuss the underlying mechanisms. Considering the interplay of cancer hallmarks, we propose several prospective strategies for circumventing the deficits of therapeutic resistance and complete cure of cancer patients.
Collapse
Affiliation(s)
- Wenyue Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chenxi Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaheng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qizhi Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Changsha Kexin Cancer Hospital, Changsha, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
7
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Sun T, Yin YF, Jin HG, Liu HR, Tian WC. Exosomal microRNA-19b targets FBXW7 to promote colorectal cancer stem cell stemness and induce resistance to radiotherapy. Kaohsiung J Med Sci 2021; 38:108-119. [PMID: 34520626 DOI: 10.1002/kjm2.12449] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) continues to be one of the most malignant cancers with a high mortality rate to date. Promoting the radio-responsiveness of CRC is of great importance for local control and prognosis. In this study, we examined the roles of exosomal microRNA-19b (miR-19b) in CRC radioresistance. The regulatory role of miR-19b in CRC stem cells and radiotherapy-resistant cells was determined using miRNA microarray analysis, and its prognostic value was probed using the TCGA database. It was found that miR-19b was overexpressed in CRC tissues, which indicated a poor prognosis. CRC-derived exosomes (EXOs) enhanced the radio-resistance and stemness properties of CRC cells via delivery of miR-19b in vitro and in vivo. FBXW7 was identified as a putative target of miR-19b. On the contrary, reintroduction of FBXW7 reversed the effects of miR-19b on radioresistance and stemness properties. Furthermore, the Wnt/β-catenin pathway activity was elevated in CRC cells upon EXOs treatment, decreased after miR-19b downregulation, and increased again after FBXW7 downregulation. These results suggest that miR-19b inhibition could enhance the efficacy of radiotherapy while reducing the stemness properties, thus presenting a promising strategy for sensitizing CRC cells to radiotherapy.
Collapse
Affiliation(s)
- Tao Sun
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, China
| | - Yong-Fang Yin
- Department of Radiology, Jilin Province People's Hospital, Changchun, China
| | - Hai-Guo Jin
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, China
| | - Hai-Rui Liu
- Department of Abdominal Surgery, Jilin Cancer Hospital, Changchun, China
| | - Wei-Cheng Tian
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, China
| |
Collapse
|
9
|
Kar R, Jha SK, Ojha S, Sharma A, Dholpuria S, Raju VSR, Prasher P, Chellappan DK, Gupta G, Kumar Singh S, Paudel KR, Hansbro PM, Kumar Singh S, Ruokolainen J, Kesari KK, Dua K, Jha NK. The FBXW7-NOTCH interactome: A ubiquitin proteasomal system-induced crosstalk modulating oncogenic transformation in human tissues. Cancer Rep (Hoboken) 2021; 4:e1369. [PMID: 33822486 PMCID: PMC8388169 DOI: 10.1002/cnr2.1369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ubiquitin ligases or E3 ligases are well programmed to regulate molecular interactions that operate at a post-translational level. Skp, Cullin, F-box containing complex (or SCF complex) is a multidomain E3 ligase known to mediate the degradation of a wide range of proteins through the proteasomal pathway. The three-dimensional domain architecture of SCF family proteins suggests that it operates through a novel and adaptable "super-enzymatic" process that might respond to targeted therapeutic modalities in cancer. RECENT FINDINGS Several F-box containing proteins have been characterized either as tumor suppressors (FBXW8, FBXL3, FBXW8, FBXL3, FBXO1, FBXO4, and FBXO18) or as oncogenes (FBXO5, FBXO9, and SKP2). Besides, F-box members like βTrcP1 and βTrcP2, the ones with context-dependent functionality, have also been studied and reported. FBXW7 is a well-studied F-box protein and is a tumor suppressor. FBXW7 regulates the activity of a range of substrates, such as c-Myc, cyclin E, mTOR, c-Jun, NOTCH, myeloid cell leukemia sequence-1 (MCL1), AURKA, NOTCH through the well-known ubiquitin-proteasome system (UPS)-mediated degradation pathway. NOTCH signaling is a primitive pathway that plays a crucial role in maintaining normal tissue homeostasis. FBXW7 regulates NOTCH protein activity by controlling its half-life, thereby maintaining optimum protein levels in tissue. However, aberrations in the FBXW7 or NOTCH expression levels can lead to poor prognosis and detrimental outcomes in patients. Therefore, the FBXW7-NOTCH axis has been a subject of intense study and research over the years, especially around the interactome's role in driving cancer development and progression. Several studies have reported the effect of FBXW7 and NOTCH mutations on normal tissue behavior. The current review attempts to critically analyze these mutations prognostic value in a wide range of tumors. Furthermore, the review summarizes the recent findings pertaining to the FBXW7 and NOTCH interactome and its involvement in phosphorylation-related events, cell cycle, proliferation, apoptosis, and metastasis. CONCLUSION The review concludes by positioning FBXW7 as an effective diagnostic marker in tumors and by listing out recent advancements made in cancer therapeutics in identifying protocols targeting the FBXW7-NOTCH aberrations in tumors.
Collapse
Affiliation(s)
- Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Ahmedabad, Gujarat, 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates
| | - Ankur Sharma
- Department of Life sciences, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sunny Dholpuria
- Department of Life sciences, School of Basic Science & Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Venkata Sita Rama Raju
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, New South Wales, 2050, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, New South Wales, 2050, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, 2308, Australia
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, Uttar Pradesh, 226002, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | | | - Kamal Dua
- Centre for Inflammation, Centenary Institute, New South Wales, 2050, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, 2308, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
10
|
Wang H, Lu Y, Wang M, Wu Y, Wang X, Li Y. Roles of E3 ubiquitin ligases in gastric cancer carcinogenesis and their effects on cisplatin resistance. J Mol Med (Berl) 2021; 99:193-212. [PMID: 33392633 DOI: 10.1007/s00109-020-02015-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022]
Abstract
Although gastric cancer (GC) is one of the most common cancers with high incidence and mortality rates, its pathogenesis is still not elucidated. GC carcinogenesis is complicated and involved in the activation of oncoproteins and inactivation of tumor suppressors. The ubiquitin-proteasome system (UPS) is crucial for protein degradation and regulation of physiological and pathological processes. E3 ubiquitin ligases are pivotal enzymes in UPS, containing various subfamily proteins. Previous studies report that some E3 ligases, including SKP2, CUL1, and MDM2, act as oncoproteins in GC carcinogenesis. On the other hand, FBXW7, FBXL5, FBXO31, RNF43, and RNF180 exert as tumor suppressors in GC carcinogenesis. Moreover, E3 ligases modulate cell growth, cell apoptosis, and cell cycle; thus, it is complicated to confer cisplatin resistance/sensitivity in GC cells. The intrinsic and acquired cisplatin resistance limits its clinical application against GC. In this review, we explore oncogenic and tumor suppressive roles of E3 ligases in GC carcinogenesis and focus on the effects of E3 ligases on cisplatin resistance in GC cells, which will provide novel therapeutic targets for GC therapy, especially for cisplatin-resistant patients.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Youliang Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaodong Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
11
|
Sánchez Y, Vaca-Paniagua F, Herrera L, Oñate L, Herrera-Goepfert R, Navarro-Martínez G, Cerrato D, Díaz-Velázquez C, Quezada EM, García-Cuellar C, Prada D. Nutritional Indexes as Predictors of Survival and Their Genomic Implications in Gastric Cancer Patients. Nutr Cancer 2020; 73:1429-1439. [PMID: 32715775 DOI: 10.1080/01635581.2020.1797833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric cancer is an aggressive malignancy with poor prognosis. Although obesity is a risk factor, an association between overweight and better survival has been reported. We explored the genomic implications of such association. Data from 940 patients were analyzed using Cox regression models and ROC curves to assess body mass index (BMI) and prognostic nutritional index (PNI) as predictors of survival. The exome sequencing of a random subset was analyzed to determine copy number variation (CNV) and single nucleotide variation (SNV), using Kruskal-Wallis and chi-square tests to evaluate their clinical implications. Overall survival was lower in patients with BMI ≤ 24.9 and PNI ≤ 29 (p < 0.001). BMI and survival were directly correlated (HR: 0.972, 95% CI: 0.953, 0.992; p-value < 0.007). A higher PNI correlated with improved survival (HR: 0.586, 95% CI: 0.429, 0.801; p-value <0.001). We found a PNI cutoff point of 41.00 for overall survival. Genomic analysis showed an association between lower BMI, less CNV events (p-value = 0.040) and loss of tumor suppressor genes (p-value = 0.021). BMI and PNI are independent factors for overall survival in gastric cancer, probably linked to variations in genomic intratumoral alterations.
Collapse
Affiliation(s)
- Yesennia Sánchez
- Unit of Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe Vaca-Paniagua
- Unit of Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Luis Herrera
- Unit of Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Luis Oñate
- Unit of Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Guiselle Navarro-Martínez
- Unit of Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dennis Cerrato
- Unit of Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Clara Díaz-Velázquez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico
| | - Ericka Marel Quezada
- Unit of Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia García-Cuellar
- Unit of Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diddier Prada
- Unit of Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Biomedical Informatics, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York City, USA
| |
Collapse
|
12
|
Sun D, Wang G, Xiao C, Xin Y. Hsa_circ_001988 attenuates GC progression in vitro and in vivo via sponging miR-197-3p. J Cell Physiol 2020; 236:612-624. [PMID: 32592202 DOI: 10.1002/jcp.29888] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Hsa_circ_001988 has been identified as a tumor suppressor gene in several carcinomas. However, its expression pattern and role in gastric cancer (GC) have still remained elusive. This study aimed to explore the functions of hsa_circ_001988 in GC. Quantitative reverse transcription polymerase chain reaction assay was performed to assess the expressions of hsa_circ_001988, miR-197-3p, FBXW7, CCDC6, and U2AF65 in GC tissues. The correlation analysis was undertaken to find out the relationship between hsa_circ_001988 expression and clinicopathological factors. A series of cellular experiments were carried out to describe the effects of hsa_circ_001988 on GC in vivo and in vitro. Besides, RNA immunoprecipitation (RIP) assay was performed to verify the relationship among EIF4A3, U2AF65, and hsa_circ_001988. We first found that the expression of hsa_circ_001988 was decreased in 341 GC patients that was related to World Health Organization histological types, Lauren types, and tumor invasion depth (p < .05). Silencing of hsa_circ_001988 facilitated proliferation, colony formation, migration, and invasion of GC cells, while overexpression of hsa_circ_001988 reversed the effect on GC progression in vitro. Additionally, the results of subcutaneous xenotransplanted tumor model demonstrated that overexpressing hsa_circ_001988 significantly suppressed the subcutaneous tumor growth in vivo. Mechanistically, hsa_circ_001988 attenuated the miR-197-3p expression possibly due to its molecular sponge effect, and then, positively promoted FBXW7 expression. Afterwards, FBXW7 regulated the expressions of yes-associated protein 1, cyclinD1, CCDC6, and EMT-related proteins. Notably, RIP assay showed the enrichment relationship among EIF4A3, U2AF65, and hsa_circ_001988. Additionally, EIF4A3 or U2AF65 promoted cyclization of hsa_circ_001988 in GC. Hsa_circ_001988 inhibits the proliferation and metastasis of GC via modulating EIF4A3/U2AF65-mediated hsa_circ_001988/miR-197-3p/FBXW7 axis.
Collapse
Affiliation(s)
- Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Gang Wang
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Chang Xiao
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Lin H, Zhang L, Zhang C, Liu P. Exosomal MiR-500a-3p promotes cisplatin resistance and stemness via negatively regulating FBXW7 in gastric cancer. J Cell Mol Med 2020; 24:8930-8941. [PMID: 32588541 PMCID: PMC7417713 DOI: 10.1111/jcmm.15524] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance has been a major challenge in advanced gastric cancer (GC) therapy. Exosomal transfer of oncogenic miRNAs implicates important effects in mediating recipient cell chemoresistance by transmitting active molecules. In this study, we found that microRNA‐500a‐3p was highly expressed in cisplatin (DDP) resistant GC cells (MGC803/DDP and MKN45/DDP) and their secreted exosomes than that in the corresponding parental cells. MGC803/DDP‐derived exosomes enhance DDP resistance and stemness properties of MGC803 recipient cells via exosomal delivery of miR‐500a‐3p in vitro and in vivo through targeting FBXW7. However, reintroduction of FBXW7 in MGC803 cells reverses miR‐500a‐3p‐mediated DDP resistance as well as stemness properties. Furthermore, elevated miR‐500a‐3p in the plasma exosomes of GC patients is correlated with DDP resistance and thereby results in poor progression‐free prognosis. Our finding highlights the potential of exosomal miR‐500a‐3p as an potential modality for the prediction and treatment of GC with chemoresistance.
Collapse
Affiliation(s)
- Hao Lin
- Department of General Surgery, XuZhou Central Hospital, Xuzhou, China
| | - Liang Zhang
- Department of General Surgery, XuZhou Central Hospital, Xuzhou, China
| | - Caihua Zhang
- Department of General Surgery, XuZhou Central Hospital, Xuzhou, China
| | - Pengpeng Liu
- Department of General Surgery, XuZhou Central Hospital, Xuzhou, China
| |
Collapse
|
14
|
Wang Y, An Y, Ma Y, Guo J. F-box/WD-40 repeat-containing protein 7: A potential target in the progression and treatment of gastrointestinal malignancy. Oncol Lett 2019; 17:3625-3634. [PMID: 30881487 PMCID: PMC6403509 DOI: 10.3892/ol.2019.10036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer is a principal cause of human morbidity and mortality, with gastrointestinal malignancies, in particular, resulting in a marked number of tumor-associated mortalities. The progression of gastrointestinal malignancy is regulated by a variety of aberrantly expressed proteins, a number of which facilitate tumor progression, whereas, others function as tumor suppressors. The detection of such proteins not only contributes to the early diagnosis of cancer, they may additionally serve as potential therapeutic targets. In normal tissues, numerous proteins encoded by proto-oncoproteins are degraded by ubiquitylation enzymes, consisting of F-box/WD-40 repeat-containing protein 7 (Fbw7) and other proteins, thus avoiding tumorigenesis and maintaining homeostasis. In tumor tissues, the downregulation of Fbw7, caused by various factors, leads to disorders in ubiquitinase synthesis, which may induce tumor progression and chemoresistance, particularly in gastrointestinal malignancy. Therefore, an in-depth study of the regulatory mechanisms involved in disorders of Fbw7 expression and the role of Fbw7 in chemoresistance of gastrointestinal tumors may suggest improvements for early diagnostic screening and targeted therapy.
Collapse
Affiliation(s)
- Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yang An
- Department of Anesthesia, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Ma
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
15
|
FBXW7 in Cancer: What Has Been Unraveled Thus Far? Cancers (Basel) 2019; 11:cancers11020246. [PMID: 30791487 PMCID: PMC6406609 DOI: 10.3390/cancers11020246] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
: The FBXW7 (F-box with 7 tandem WD40) protein encoded by the gene FBXW7 is one of the crucial components of ubiquitin ligase called Skp1-Cullin1-F-box (SCF) complex that aids in the degradation of many oncoproteins via the ubiquitin-proteasome system (UPS) thus regulating cellular growth. FBXW7 is considered as a potent tumor suppressor as most of its target substrates can function as potential growth promoters, including c-Myc, Notch, cyclin E, c-JUN, and KLF5. Its regulators include p53, C/EBP-δ, Numb, microRNAs, Pin 1, Hes-5, BMI1, Ebp2. Mounting evidence has indicated the involvement of aberrant expression of FBXW7 for tumorigenesis. Moreover, numerous studies have also shown its role in cancer cell chemosensitization, thereby demonstrating the importance of FBXW7 in the development of curative cancer therapy. This comprehensive review emphasizes on the targets, functions, regulators and expression of FBXW7 in different cancers and its involvement in sensitizing cancer cells to chemotherapeutic drugs.
Collapse
|
16
|
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17:115. [PMID: 30086763 PMCID: PMC6081812 DOI: 10.1186/s12943-018-0857-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006). F-box and WD repeat domain containing 7 (FBXW7), also known as Sel10, hCDC4 or hAgo, is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a critical tumor suppressor and one of the most commonly deregulated ubiquitin-proteasome system proteins in human cancer. FBXW7 controls proteasome-mediated degradation of oncoproteins such as cyclin E, c-Myc, Mcl-1, mTOR, Jun, Notch and AURKA. Consistent with the tumor suppressor role of FBXW7, it is located at chromosome 4q32, a genomic region deleted in more than 30% of all human cancers (Spruck CH et al., Cancer Res 62:4535-9, 2002). Genetic profiles of human cancers based on high-throughput sequencing have revealed that FBXW7 is frequently mutated in human cancers. In addition to genetic mutations, other mechanisms involving microRNA, long non-coding RNA, and specific oncogenic signaling pathways can inactivate FBXW7 functions in cancer cells. In the following sections, we will discuss the regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBXW7 in human cancers.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
17
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|