1
|
Huang YP, Shi JY, Luo XT, Luo SC, Cheung PCK, Corke H, Yang QQ, Zhang BB. How do probiotics alleviate constipation? A narrative review of mechanisms. Crit Rev Biotechnol 2025; 45:80-96. [PMID: 38710624 DOI: 10.1080/07388551.2024.2336531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Jie-Yan Shi
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Xin-Tao Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Si-Chen Luo
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, P.R. China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, P.R. China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qiong-Qiong Yang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou, P.R. China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, P.R. China
| |
Collapse
|
2
|
Chi ZC. Recent studies on gut-brain axis and irritable bowel syndrome. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:468-483. [DOI: 10.11569/wcjd.v32.i7.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
|
3
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lu Y, Zhang J, Zhang Z, Liang X, Liu T, Yi H, Gong P, Wang L, Yang W, Zhang X, Zhang L, Yang L, Shi H. Konjac glucomannan with probiotics acts as a combination laxative to relieve constipation in mice by increasing short-chain fatty acid metabolism and 5-hydroxytryptamine hormone release. Nutrition 2020; 84:111112. [PMID: 33454530 DOI: 10.1016/j.nut.2020.111112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Various probiotics and natural products can help to relieve constipation. This study aimed to explore the constipation-relieving effects and potential mechanism of a combination laxative of konjac glucomannan and probiotics. METHODS This study evaluated the gastrointestinal-tract viability of probiotics in vitro. A constipation model was constructed in BALB/c mice, and the efficacies of the combinations verified in terms of their bowel movement-promoting effects, including the first black-stool defecation time and gastrointestinal transit rates of mice. Colonization by the probiotics was determined by quantitative real-time polymerase chain reaction. Hematoxylin-eosin staining, gas chromatography, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and Western blot were also used for analysis. RESULTS Lactobacillus paracasei X11 (X11) and L. casei YRL577 (YRL577) had outstanding gastrointestinal-tract viability. Konjac glucomannan (KGM) + X11, Prunus persica + X11, and Prunus persica + YRL577 significantly relieved constipation. In addition, KGM promoted the colonization of X11. Meanwhile, KGM + X11 effectively promoted the metabolism of short-chain fatty acids in mice better than other combinations, and the 5-hydroxytryptamine (5-HT) content in the KGM + X11 group was the highest among all the groups. Therefore, KGM + X11 was selected for further research. The combination laxative promoted the secretion of 5-HT, up-regulated mRNA and protein levels of 5-HT receptor 4 and serotonin transporter via the 5-HT pathway, and effectively relieved constipation. CONCLUSIONS The combination laxative konjac glucomannan-probiotic (KGM + X11) promoted defecation in constipated mice, possibly by increasing short-chain fatty acid metabolism and 5-HT hormone release.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Junxue Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lingli Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wenjun Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinyi Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | - Liuqing Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Mishima Y, Ishihara S. Molecular Mechanisms of Microbiota-Mediated Pathology in Irritable Bowel Syndrome. Int J Mol Sci 2020; 21:ijms21228664. [PMID: 33212919 PMCID: PMC7698457 DOI: 10.3390/ijms21228664] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most prevalent functional gastrointestinal disorders, and accumulating evidence gained in both preclinical and clinical studies indicate the involvement of enteric microbiota in its pathogenesis. Gut resident microbiota appear to influence brain activity through the enteric nervous system, while their composition and function are affected by the central nervous system. Based on these results, the term “brain–gut–microbiome axis” has been proposed and enteric microbiota have become a potential therapeutic target in IBS cases. However, details regarding the microbe-related pathophysiology of IBS remain elusive. This review summarizes the existing knowledge of molecular mechanisms in the pathogenesis of IBS as well as recent progress related to microbiome-derived neurotransmitters, compounds, metabolites, neuroendocrine factors, and enzymes.
Collapse
|
7
|
El-Salhy M, Hausken T, Hatlebakk JG. Density of Musashi‑1‑positive stem cells in the stomach of patients with irritable bowel syndrome. Mol Med Rep 2020; 22:3135-3140. [PMID: 32945509 PMCID: PMC7453583 DOI: 10.3892/mmr.2020.11412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) affects ~12% of the global population. Although the etiology of IBS is not completely understood, several factors are known to serve a pivotal role in its pathophysiology, including genetic factors, diet, the intestinal microbiota, gastrointestinal endocrine cells and low‑grade inflammation. Musashi‑1 is expressed by stem cells and their early progeny, and is used as a stem cell marker. The low density of intestinal endocrine cells in patients with IBS is thought to be caused by decreased numbers of intestinal stem cells and their differentiation into enteroendocrine cells. The present study employed Musashi‑1 as a marker to detect stem cells in the stomach of 54 patients with IBS and 51 healthy subjects. The patients and controls underwent standard gastroscopy, and biopsy samples were taken from the corpus and antrum. Immunohistochemical staining of gastrin, somatostatin and Mushasi‑1 was carried out and semi‑quantified by computerized image analysis. The density (number of positive cells/mm2 epithelium) of gastrin‑positive cells in the controls and patients with IBS were 337.9±560 and 531.0±908 (median ± range; P<0.0001), respectively. For somatostatin‑positive cells, the density reached 364.4±526.0 in the healthy controls and 150.7±514.0 in patients with IBS (P<0.0001). The density of Musashi‑1‑positive cells was defined as the number of cells per gastric or pyloric gland neck. In the corpus, Musashi‑1‑positive cells density reached 3.0±7.0 in the corpus of the healthy controls and 3.8±7.7 in the patients with IBS. Moreover, the corresponding values in the antrum were 6.0±6.0 and 6.0±6.0, respectively. The Musashi‑1‑positive cell density did not differ significantly between the controls and patients with IBS in the corpus or antrum (P=0.4 and 0.3, respectively). These findings indicated that changes in the stomach endocrine cells observed in patients with IBS may not be explained by an abnormality in stem cells like those found in the small and large intestines of these patients.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, 5416 Stord, Norway
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, 5020 Bergen; 3National Centre for Functional Gastrointestinal Disorders, 5021 Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine, University of Bergen, 5020 Bergen; 3National Centre for Functional Gastrointestinal Disorders, 5021 Bergen, Norway
| |
Collapse
|
8
|
El-Salhy M. Possible role of intestinal stem cells in the pathophysiology of irritable bowel syndrome. World J Gastroenterol 2020; 26:1427-1438. [PMID: 32308344 PMCID: PMC7152517 DOI: 10.3748/wjg.v26.i13.1427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is not completely understood. However, several factors are known to play a role in pathophysiology of IBS such as genetics, diet, gut microbiota, gut endocrine cells, stress and low-grade inflammation. Understanding the pathophysiology of IBS may open the way for new treatment approaches. Low density of intestinal stem cells and low differentiation toward enteroendocrine cells has been reported recently in patients with IBS. These abnormalities are believed to be the cause of the low density of enteroendocrine cells seen in patients with IBS. Enteroendocrine cells regulate gastrointestinal motility, secretion, absorption and visceral sensitivity. Gastrointestinal dysmotility, abnormal absorption/secretion and visceral hypersensitivity are all seen in patients with IBS and haven been attributed to the low density the intestinal enteroendocrine cells in these patients. The present review conducted a literature search in Medline (PubMed) covering the last ten years until November 2019, where articles in English were included. Articles about the intestinal stem cells and their possible role in the pathophysiology of IBS are discussed in the present review. The present review discusses the assumption that intestinal stem cells play a central role in the pathophysiology of IBS and that the other factors known to contribute to the pathophysiology of IBS such as genetics, diet gut microbiota, stress, and low-grade inflammation exert their effects through affecting the intestinal stem cells. It reports further the data that support this assumption on genetics, diet, gut microbiota, stress with depletion of glutamine, and inflammation.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord 54 09, Norway
- Department of Clinical Medicine, University of Bergen, Bergen 50 21, Norway
| |
Collapse
|
9
|
El-Salhy M, Hatlebakk JG, Hausken T. Possible role of peptide YY (PYY) in the pathophysiology of irritable bowel syndrome (IBS). Neuropeptides 2020; 79:101973. [PMID: 31727345 DOI: 10.1016/j.npep.2019.101973] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder of unknown aetiology for which there is no effective treatment. Although IBS does not increase mortality, it reduces the quality of life and is an economic burden to both the patients themselves and society as a whole. Peptide YY (PYY) is localized in endocrine cells located in the ileum, colon and rectum. The concentration of PYY and the density of PYY cells are decreased in both the colon and rectum but unchanged in the ileum of patients with IBS. The low density of PYY cells in the large intestine may be caused by a decreased number of stem cells and their progeny toward endocrine cells. PYY regulates the intestinal motility, secretion and absorption as well as visceral sensitivity via modulating serotonin release. An abnormality in PYY may therefore contribute to the intestinal dysmotility and visceral hypersensitivity seen in IBS patients. Diet management involving consuming a low-FODMAP diet restores the density of PYY cells in the large intestine and improves abdominal symptoms in patients with IBS. This review shows that diet management appears to be a valuable tool for correcting the PYY abnormalities in the large intestine of IBS patients in the clinic.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| |
Collapse
|
10
|
Heenan PE, Keenan JI, Bayer S, Simon M, Gearry RB. Irritable bowel syndrome and the gut microbiota. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1695635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Phoebe E. Heenan
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | | | - Simone Bayer
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Myrthe Simon
- Department of Medicine, Vrije Universiteit, Amsterdam, Netherlands
| | - Richard B. Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
11
|
Wang YS, Wang EK, Meng YY, Bi ZJ, Yuan JY. Advances in understanding relationship between 5-hydroxytryptamine and its receptors and intestinal dysmotility in irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2019; 27:954-960. [DOI: 10.11569/wcjd.v27.i15.954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common clinical functional gastrointestinal disease, which seriously affects the quality of life of patients. The pathogenesis of this disorder is unclear and may be related to the changes of visceral sensitivity, gastrointestinal motility, and the function of the brain-gut axis. 5-hydroxytryptamine (5-HT) is an important neurotransmitter, which exhibits a variety of biological effects including gastrointestinal secretion and motility regulation by binding to its receptors. The changes in the synthesis and release of 5-HT and in the expression and function of corresponding receptors are all involved in the pathophysiological process of IBS. In this paper, we will review the role of 5-HT and its receptors in intestinal dysmotility in IBS.
Collapse
Affiliation(s)
- Yin-Shu Wang
- Institute of Spleen and Stomach Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - En-Kang Wang
- Institute of Spleen and Stomach Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yang-Yang Meng
- Institute of Spleen and Stomach Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zi-Juan Bi
- Institute of Spleen and Stomach Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian-Ye Yuan
- Institute of Spleen and Stomach Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
12
|
Diet in Irritable Bowel Syndrome (IBS): Interaction with Gut Microbiota and Gut Hormones. Nutrients 2019; 11:nu11081824. [PMID: 31394793 PMCID: PMC6723613 DOI: 10.3390/nu11081824] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
Diet plays an important role not only in the pathophysiology of irritable bowel syndrome (IBS), but also as a tool that improves symptoms and quality of life. The effects of diet seem to be a result of an interaction with the gut bacteria and the gut endocrine cells. The density of gut endocrine cells is low in IBS patients, and it is believed that this abnormality is the direct cause of the symptoms seen in IBS patients. The low density of gut endocrine cells is probably caused by a low number of stem cells and low differentiation progeny toward endocrine cells. A low fermentable oligo-, di-, monosaccharide, and polyol (FODMAP) diet and fecal microbiota transplantation (FMT) restore the gut endocrine cells to the level of healthy subjects. It has been suggested that our diet acts as a prebiotic that favors the growth of a certain types of bacteria. Diet also acts as a substrate for gut bacteria fermentation, which results in several by-products. These by-products might act on the stem cells in such a way that the gut stem cells decrease, and consequently, endocrine cell numbers decrease. Changing to a low-FODMAP diet or changing the gut bacteria through FMT improves IBS symptoms and restores the density of endocrine cells.
Collapse
|
13
|
Fukui H, Xu X, Miwa H. Role of Gut Microbiota-Gut Hormone Axis in the Pathophysiology of Functional Gastrointestinal Disorders. J Neurogastroenterol Motil 2018; 24:367-386. [PMID: 29969855 PMCID: PMC6034676 DOI: 10.5056/jnm18071] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota exert a pivotal influence on various functions including gastrointestinal (GI) motility, metabolism, nutrition, immunity, and the neuroendocrine system in the host. These effects are mediated by not only short-chain fatty acids produced by microbiota but also gut hormones and inflammatory signaling by enteroendocrine and immune cells under the influence of the microbiota. GI motility is orchestrated by the enteric nervous system and hormonal networks, and disturbance of GI motility plays an important role in the pathophysiology of functional gastrointestinal disorders (FGIDs). In this context, microbiota-associated mediators are considered to act on specific receptors, thus affecting the enteric nervous system and, subsequently, GI motility. Thus, the pathophysiology of FGIDs is based on alterations of the gut microbiota/gut hormone axis, which have crucial effects on GI motility.
Collapse
Affiliation(s)
- Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa, Nishinomiya,
Japan
| | - Xin Xu
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa, Nishinomiya,
Japan
- Department of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin,
China
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa, Nishinomiya,
Japan
| |
Collapse
|
14
|
Chatterji P, Rustgi AK. RNA Binding Proteins in Intestinal Epithelial Biology and Colorectal Cancer. Trends Mol Med 2018; 24:490-506. [PMID: 29627433 DOI: 10.1016/j.molmed.2018.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
The intestinal epithelium is highly proliferative and consists of crypt invaginations that house stem cells and villus projections with differentiated cells. There exists a dynamic equilibrium between proliferation, migration, differentiation, and senescence that is regulated by several factors. Among these are RNA binding proteins (RBPs) that bind their targets in a both context dependent and independent manner. RBP-RNA complexes act as rheostats by regulating expression of RNAs both co- and post-transcriptionally. This is important, especially in response to intestinal injury, to fuel regeneration. The manner in which these RBPs function in the intestine and their interactions with other pivotal pathways in colorectal cancer may provide a framework for new insights and potential therapeutic applications.
Collapse
Affiliation(s)
- Priya Chatterji
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
El-Salhy M, Patcharatrakul T, Hatlebakk JG, Hausken T, Gilja OH, Gonlachanvit S. Enteroendocrine, Musashi 1 and neurogenin 3 cells in the large intestine of Thai and Norwegian patients with irritable bowel syndrome. Scand J Gastroenterol 2017; 52:1331-1339. [PMID: 28853300 DOI: 10.1080/00365521.2017.1371793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The prevalence, gender distribution and clinical presentation of IBS differ between Asian and Western countries. This study aimed at studying and comparing enteroendocrine, Musashi 1 (Msi 1) and neurogenin 3 (neurog 3) cells in Thai and Norwegian IBS patients. MATERIAL AND METHODS Thirty Thai and 61 Norwegian IBS patients as well as 20 Thai and 24 Norwegian controls were included. Biopsy samples were taken from each of the sigmoid colon and the rectum during a standard colonoscopy. The samples were immunostained for serotonin, peptide YY, oxyntomodulin, pancreatic polypeptide, somatostatin, Msi 1 and neurog 3. The densities of immunoreactive cells were determined with computerized image analysis. RESULTS The densities of several enteroendocrine cell types were altered in both the colon and rectum of both Thai and Norwegian IBS patients. Some of these changes were similar in Thai and Norwegian IBS patients, while others differed. CONCLUSIONS The findings of abnormal densities of the enteroendocrine cells in Thai patients support the notion that enteroendocrine cells are involved in the pathophysiology of IBS. The present observations highlight that IBS differs in Asian and Western countries, and show that the changes in large-intestine enteroendocrine cells in Thai and Norwegian IBS patients might be caused by different mechanisms.
Collapse
Affiliation(s)
- Magdy El-Salhy
- a Department of Medicine, Section for Gastroenterology , Stord Helse-Fonna Hospital , Stord , Norway.,b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway
| | - Tanisa Patcharatrakul
- d Department of Medicine, GI Motility Research Unit, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand.,e King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Jan Gunnar Hatlebakk
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway
| | - Trygve Hausken
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway.,e King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| | - Odd Helge Gilja
- b Department of Clinical Medicine , University of Bergen , Bergen , Norway.,c Department of Medicine, National Centre for Functional Gastrointestinal Disorders , Haukeland University Hospital , Bergen , Norway.,f Department of Medicine , National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital , Bergen , Norway
| | - Sutep Gonlachanvit
- d Department of Medicine, GI Motility Research Unit, Division of Gastroenterology, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand.,e King Chulalongkorn Memorial Hospital, Thai Red Cross Society , Bangkok , Thailand
| |
Collapse
|