1
|
Nguyen CTT, Nguyen TMT, Phung TH. Meta-analysis revisiting the influence of UGT1A1*28 and UGT1A1*6 on irinotecan safety in colorectal cancer patients. Pharmacogenomics 2024; 25:469-477. [PMID: 39171626 PMCID: PMC11492647 DOI: 10.1080/14622416.2024.2385289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Aim: To evaluate the association between irinotecan safety and the UGT1A1 gene polymorphism in colorectal cancer (CRC) patients.Materials & methods: The studies were systematically searched and identified from three databases (PubMed, Embase and The Cochrane Library) until 28 February 2023. The relationships were evaluated using pooled odds ratio (OR).Results: A total of 30 studies out of 600 were included, comprising 4471 patients. UGT1A1*28 was associated with a statistically significant increase in the OR for diarrhea (OR: 1.59, 95% CI = 1.24-2.06 in the additive model; OR = 3.24, 95% CI = 2.01-5.21 in the recessive model; and OR = 1.95, 95% CI = 1.42-2.69 in the dominant model) and neutropenia (OR = 1.70, 95% CI = 1.40-2.06 in the additive model; OR = 4.10, 95%CI = 2.69-6.23 in the recessive model; and OR = 1.93, 95% CI = 1.61-2.31 in the dominant model). Subgroup analysis indicated consistent associations in both Asian and non-Asian populations. UGT1A1*6 was associated with a statistically significant elevation in the OR for diarrhea (only in the recessive model, OR = 2.42; 95% CI = 1.14-5.11) and neutropenia (across all genetic models).Conclusion: The UGT1A1*28 and UGT1A1*6 alleles might be a crucial indicator for predicting irinotecan safety in CRC.
Collapse
Affiliation(s)
- Cuc Thi Thu Nguyen
- Faculty of Pharmaceutical Management & Economics, Hanoi University of Pharmacy, Hanoi, 10000, Vietnam
| | | | - Thanh Huong Phung
- Faculty of Biotechnology, Hanoi University of Pharmacy, Hanoi, 10000,Vietnam
| |
Collapse
|
2
|
Ginzac A, Thivat E, Petorin C, Richard D, Herviou P, Molnar I, Devaud H, Creveaux I, Ferrer F, Authier N, Jary M, Pezet D, Durando X. A phase-II study based on dose adjustment according to UGT1A1 polymorphism: is irinotecan underdosed in first-line FOLFIRI regimen for mCRC? Cancer Chemother Pharmacol 2024; 93:225-236. [PMID: 37932443 PMCID: PMC10901933 DOI: 10.1007/s00280-023-04603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Irinotecan has considerable importance in the treatment of metastatic colorectal cancer (mCRC). UDP-glucoronyltransferase (UGT) 1A1 is responsible for the inactivation of SN-38, a metabolite of irinotecan. Depending on UGT1A1 polymorphism, the activity of the UGT enzyme can be reduced leading to more frequent occurrence of adverse events related to irinotecan. The present study aimed to assess the safety and efficacy of different doses of irinotecan adjusted according to UGT1A1 polymorphism. METHODS Thirty-four patients treated with FOLFIRI as first-line treatment for mCRC were included in this study. The irinotecan dosage was adapted on the basis of UGT1A1 polymorphisms: *1/*1 (370 mg/m2); *1/*28 (310 mg/m2), and *28/*28 (180 mg/m2). The incidence of grades 3 and 4 toxicities (neutropenia, febrile neutropenia, and diarrhoea) was recorded. Response was assessed according to the RECIST 1.1 criteria. RESULTS On the basis of UGT1A1 genotyping, 20 patients were *1/*1 (58.8%), 12 were *1/*28 (35.3%) and 2 were *28/*28 (5.9%). Seven patients experienced at least one severe toxicity, i.e., 21% of the population, amounting to eleven adverse events. Concerning the response rate, 15 patients (44%) had partial or complete response. CONCLUSION This study demonstrates that mCRC patients treated with FOLFIRI can tolerate a higher dose of irinotecan than the standard dose, i.e., > 180 mg/m2, on the basis of their UGT1A1 genotype, without increased toxicities. TRIAL REGISTRATION NCT01963182 (registered on 16/10/2013, Clermont-Ferrand, France).
Collapse
Affiliation(s)
- Angeline Ginzac
- INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Centre d'Investigation Clinique, UMR501, 63000, Clermont-Ferrand, France
- Département de Recherche Clinique, Délégation Recherche Clinique et Innovation, Centre Jean PERRIN, 63000, Clermont-Ferrand, France
| | - Emilie Thivat
- INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
- Centre d'Investigation Clinique, UMR501, 63000, Clermont-Ferrand, France.
- Département de Recherche Clinique, Délégation Recherche Clinique et Innovation, Centre Jean PERRIN, 63000, Clermont-Ferrand, France.
| | - Caroline Petorin
- Département de Chirurgie Digestive et Hépatobiliaire, Hôpital Estaing, 63000, Clermont-Ferrand, France
| | - Damien Richard
- Service de Pharmacologie Médicale, Unité de Pharmacologie et de Toxicologie Biologique, CHU Gabriel MONTPIED, 63000, Clermont-Ferrand, France
| | - Pauline Herviou
- Département de Recherche Clinique, Délégation Recherche Clinique et Innovation, Centre Jean PERRIN, 63000, Clermont-Ferrand, France
| | - Ioana Molnar
- INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Centre d'Investigation Clinique, UMR501, 63000, Clermont-Ferrand, France
- Département de Recherche Clinique, Délégation Recherche Clinique et Innovation, Centre Jean PERRIN, 63000, Clermont-Ferrand, France
| | - Hervé Devaud
- Service d'oncologie Médicale, Centre Jean PERRIN, 63000, Clermont-Ferrand, France
| | - Isabelle Creveaux
- Département de Biochimie et Génétique Moléculaire, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Florent Ferrer
- Service de Pharmacologie Médicale, Unité de Pharmacologie et de Toxicologie Biologique, CHU Gabriel MONTPIED, 63000, Clermont-Ferrand, France
| | - Nicolas Authier
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Pharmacologie Médicale/Centre Evaluation et Traitement de La Douleur, Observatoire Français des Médicaments Antalgiques, Institut Analgesia, 63001, Clermont-Ferrand, France
| | - Marine Jary
- Service de Chirurgie Digestive, U1071, M2iSH, USC-INRA 2018, CHU Clermont-Ferrand, Université Clermont Auvergne, INSERM, INRA, F-63000, Clermont-Ferrand, France
| | - Denis Pezet
- Service de Chirurgie Digestive, U1071, M2iSH, USC-INRA 2018, CHU Clermont-Ferrand, Université Clermont Auvergne, INSERM, INRA, F-63000, Clermont-Ferrand, France
| | - Xavier Durando
- INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- Centre d'Investigation Clinique, UMR501, 63000, Clermont-Ferrand, France
- Département de Recherche Clinique, Délégation Recherche Clinique et Innovation, Centre Jean PERRIN, 63000, Clermont-Ferrand, France
- Service d'oncologie Médicale, Centre Jean PERRIN, 63000, Clermont-Ferrand, France
| |
Collapse
|
3
|
Huang MJ, Chen PL, Huang CS. Bilirubin metabolism and UDP-glucuronosyltransferase 1A1 variants in Asians: Pathogenic implications and therapeutic response. Kaohsiung J Med Sci 2022; 38:729-738. [PMID: 35942604 DOI: 10.1002/kjm2.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
In the Asian general population, at least six single-nucleotide variants (SNVs) in the UDP-glucuronosyltransferase (UGT) 1A1 gene have been identified: -3279T>G, -53A(TA)6 TAA>A(TA)7 TAA, 211G>A, 686C>A, 1091C>T, and 1456T>G. Each of these six SNVs was observed in at least four ethnic groups of the 12 Asian populations studied. In East Asian populations, the descending frequency of these six SNVs was as follows: -3279G>[-53A(TA)7 TAA, 211A]>(686A, 1091T)>1456G. Because of the presence of linkage disequilibrium and the expulsion phenomenon, when the SNVs -3279G, -53A(TA)7 TAA, 211A, and 686A were simultaneously involved, 15 instead of the estimated 81 genotypes were observed. Those carrying 686AA or 1456GG developed Gilbert's syndrome or Crigler-Najjar syndrome type 2. Both -53A(TA)7 TAA/A(TA)7 TAA and 211AA are the main causes of Gilbert's syndrome in East Asian populations. In East Asian populations, the 211AA genotype is the main cause of neonatal hyperbilirubinemia, whereas -53A(TA)7 TAA/A(TA)7 TAA exerts a protective effect on hyperbilirubinemia development in neonates fed with breast milk. Both 211A and -53A(TA)7 TAA are significantly associated with adverse drug reactions induced by irinotecan (one of the most widely used anticancer agents) in Asians. However, at least three common SNVs (-3279G, -53A(TA)7 TAA, and 211A) should be comprehensively analyzed. This study investigated the clinical significance of these six SNVs and demonstrated that examining UGT1A1 variants in Asian populations is considerably challenging.
Collapse
Affiliation(s)
- May-Jen Huang
- Department of Clinical Pathology, Cathay General Hospital, Taipei, Taiwan
| | - Pei-Lain Chen
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Ching-Shan Huang
- Department of Clinical Pathology, Cathay General Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Bignucolo A, Scarabel L, Toffoli G, Cecchin E, De Mattia E. Predicting drug response and toxicity in metastatic colorectal cancer: the role of germline markers. Expert Rev Clin Pharmacol 2022; 15:689-713. [PMID: 35829762 DOI: 10.1080/17512433.2022.2101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the introduction of targeted agents leading to therapeutic advances, clinical management of patients with metastatic colorectal cancer (mCRC) is still challenged by significant interindividual variability in treatment outcomes, both in terms of toxicity and therapy efficacy. The study of germline genetic variants could help to personalize and optimize therapeutic approaches in mCRC. AREAS COVERED A systematic review of pharmacogenetic studies in mCRC patients published on PubMed between 2011 and 2021, evaluating the role of germline variants as predictive markers of toxicity and efficacy of drugs currently approved for treatment of mCRC, was perfomed. EXPERT OPINION Despite the large amount of pharmacogenetic data published to date, only a few genetic markers (i.e., DPYD and UGT1A1 variants) reached the clinical practice, mainly to prevent the toxic effects of chemotherapy. The large heterogeneity of available studies represents the major limitation in comparing results and identifying potential markers for clinical use, the role of which remains exploratory in most cases. However, the available published findings are an important starting point for future investigations. They highlighted new promising pharmacogenetic markers within the network of inflammatory and immune response signaling. In addition, the emerging role of previously overlooked rare variants has been pointed out.
Collapse
Affiliation(s)
- Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| |
Collapse
|
5
|
Atasilp C, Biswas M, Jinda P, Nuntharadthanaphong N, Rachanakul J, Hongkaew Y, Vanwong N, Saokaew S, Sukasem C. Association of UGT1A1*6, UGT1A1*28, or ABCC2 c.3972C>T genetic polymorphisms with irinotecan-induced toxicity in Asian cancer patients: Meta-analysis. Clin Transl Sci 2022; 15:1613-1633. [PMID: 35506159 PMCID: PMC9283744 DOI: 10.1111/cts.13277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Effects of UGT1A1*6 and UGT1A1*28 genetic polymorphisms on irinotecan-induced severe toxicities in Asian cancer patients are inconclusive. Also, ABCC2 c.3972C>T may affect toxicity of irinotecan. The aim was to assess the aggregated risk of neutropenia or diarrhea in Asian cancer patients taking irinotecan and inherited UGT1A1*6, UGT1A1*28, or ABCC2 c.3972C>T genetic variants. A PubMed literature search for eligible studies was conducted. Odds ratios (ORs) were measured using RevMan software where p values <0.05 were statistically significant. Patients that inherited both UGT1A1*6 and UGT1A1*28 genetic variants (heterozygous: UGT1A1*1/*6 + *1/*28 and homozygous: UGT1A1*6/*6 + *28/*28) were significantly associated with increased risk of neutropenia and diarrhea compared to patients with UGT1A1*1/*1 (neutropenia: OR 2.89; 95% CI 1.97-4.23; p < 0.00001; diarrhea: OR 2.26; 95% CI 1.71-2.99; p < 0.00001). Patients carrying homozygous variants had much stronger effects in developing toxicities (neutropenia: OR 6.23; 95% CI 3.11-12.47; p < 0.00001; diarrhea: OR 3.21; 95% CI 2.13-4.85; p < 0.00001) than those with heterozygous variants. However, patients carrying the ABCC2 c.3972C>T genetic variant were not significantly associated with neutropenia (OR 1.67; 95% CI 0.98-2.84; p = 0.06) and were significantly associated with a reduction in irinotecan-induced diarrhea (OR 0.31; 95% CI 0.11-0.81; p = 0.02). Asian cancer patients should undergo screening for both UGT1A1*6 and UGT1A1*28 genetic variants to reduce substantially irinotecan-induced severe toxicities.
Collapse
Affiliation(s)
- Chalirmporn Atasilp
- Chulabhorn International College of MedicineThammasat UniversityPathum ThaniThailand
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
| | - Yaowaluck Hongkaew
- Advance Research and Development LaboratoryBumrungrad International HospitalBangkokThailand
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health SciencesChulalongkorn UniversityBangkokThailand
| | - Surasak Saokaew
- Division of Pharmacy Practice, Department of Pharmaceutical CareSchool of Pharmaceutical Sciences, University of PhayaoPhayaoThailand
- Center of Health Outcomes Research and Therapeutic Safety (COHORTS)School of Pharmaceutical Sciences, University of PhayaoPhayaoThailand
- Unit of Excellence on Clinical Outcomes Research and Integration (UNICORN)School of Pharmaceutical Sciences, University of PhayaoPhayaoThailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check‐up Services CenterBumrungrad International HospitalBangkokThailand
| |
Collapse
|
6
|
Kong X, Xu Y, Gao P, Liu Y, Wang X, Zhao M, Jiang Y, Yang H, Cao Y, Ma L. Rapid detection of the irinotecan-related UGT1A1*28 polymorphism by asymmetric PCR melting curve analysis using one fluorescent probe. J Clin Lab Anal 2022; 36:e24578. [PMID: 35766440 PMCID: PMC9396174 DOI: 10.1002/jcla.24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Determination of UGT1A1 (TA)n polymorphism prior to irinotecan therapy is necessary to avoid severe adverse drug effects. Thus, accurate and reliable genotyping methods for (TA)n polymorphism are highly desired. Here, we present a new method for polymerase chain reaction (PCR) melting curve analysis using one fluorescent probe to discriminate the UGT1A1*1 [(TA)6 ] and *28 [(TA)7 ] genotypes. METHODS After protocol optimization, this technique was applied for genotyping of 64 patients (including 23 with UGT1A1*1/*1, 22 with *1/*28, and 19 with *28/*28) recruited between 2016 and 2021 in China-Japan Friendship Hospital. The accuracy of the method was evaluated by comparing the results with those of direct sequencing and fragment analysis. The intra- and inter-run precision of the melting temperatures (Tm s) were calculated to assess the reliability, and the limit of detection was examined to assess the sensitivity. RESULTS All genotypes were correctly identified with the new method, and its accuracy was higher than that of fragment analysis. The intra- and inter-run coefficients of variation for the Tm s were both ≤0.27%, with standard deviations ≤0.14°C. The limit of detection was 0.2 ng of input genomic DNA. CONCLUSION The developed PCR melting curve analysis using one fluorescent probe can provide accurate, reliable, rapid, simple, and low-cost detection of UGT1A1 (TA)n polymorphism, and its use can be easily generalized in clinical laboratories with a fluorescent PCR platform.
Collapse
Affiliation(s)
- Xiaomu Kong
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Peng Gao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Xuran Wang
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Meimei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongwei Jiang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Hui Yang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
7
|
UGT1A Gene Family Members Serve as Potential Targets and Prognostic Biomarkers for Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6673125. [PMID: 34595239 PMCID: PMC8478536 DOI: 10.1155/2021/6673125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/21/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022]
Abstract
Background Pancreatic cancer (PC) is one of the most common cancers worldwide, with high mortality. The UGT1A gene family plays important roles in pharmacology and toxicology, contributing to interindividual differences in drug disposition. However, mRNA expression and prognostic value of the UGT1A gene family in PC have not been identified. Methods Oncomine, GEPIA2, DAVID 6.8, Metascape, Kaplan-Meier plotter, cBioPortal, GeneMANIA, TRRUST v2, TIMER, and R software were used in our study. Results The transcriptional levels of UGT1A1/3/6/8/9/10 in PC tissues were significantly higher than those in normal tissues. These results were further validated using five pairs of PC tumor tissues and adjacent nontumor tissues. A significant correlation was found between the expression of UGT1A1/6/10 and the pathological stage of PC. PC patients with lower transcriptional levels of UGT1A1/4/5/6/10 were associated with a better prognosis. The differentially expressed UGT1A gene family functions were primarily related to the glucuronidation pathway, cytokine-cytokine receptor interactions, and the ILK signaling pathway. Our data suggest that HNF1A, AHR, and CDX2 are key transcription factors for the UGT1A gene family. Furthermore, the expression levels of UGT1A1/3/8/9/10 were positively correlated with the activities of tumor-infiltrating immune cells, especially B cells. The expression levels of UGT1A6/9 were negatively correlated with macrophage infiltration levels. Conclusions These results suggest that the UGT1A gene family could serve as a potential prognostic biomarker and target for PC. However, future studies are required to validate our findings and promote the clinical utility of the UGT1A gene family in PC.
Collapse
|
8
|
Zhu X, Zhu J, Sun F, Zhen Z, Zhou D, Lu S, Huang J, Que Y, Zhang L, Cai R, Wang J, Zhang Y. Influence of UGT1A1 *6/*28 Polymorphisms on Irinotecan-Related Toxicity and Survival in Pediatric Patients with Relapsed/Refractory Solid Tumors Treated with the VIT Regimen. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:369-377. [PMID: 33790625 PMCID: PMC8001723 DOI: 10.2147/pgpm.s292556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 11/23/2022]
Abstract
Objective The association between UGT1A1*6/*28 polymorphisms and treatment outcomes of irinotecan in children remains unknown. This retrospective study investigated the influence of UGT1A1*6/*28 polymorphisms on irinotecan toxicity and survival of pediatric patients with relapsed/refractory solid tumors. Methods The present study enrolled a total of 44 patients aged younger than 18 years at Sun Yat-sen University Cancer Center between 2014 and 2017. Results There were 26 boys and 18 girls; the median age at first VIT course was six years (range: 1-18 years). The tumor types included neuroblastoma (n = 25), rhabdomyosarcoma (n = 11), Wilm's tumor (n = 4), medulloblastoma (n = 2), and desmoplastic small round cell tumor (n = 2). Overall, 203 courses of VIT regimens were prescribed. Neither UGT1A1*6 nor *28 polymorphisms were associated with the incidence rates of severe (grade III-IV) irinotecan-related toxicities, but tended to reduce the patient overall survival (UGT1A1*6, P = 0.146; UGT1A1*28, P = 0.195). Moreover, patients with mutant UGT1A1*6 genotypes were more likely to develop grade I-IV irinotecan-related diarrhea (P = 0.043) and anemia (P = 0.002). Overall, the UGT1A1*28 polymorphism may play a protective role against irinotecan-related diarrhea and abdominal pain. Conclusion In relapsed/refractory pediatric solid tumors, the UGT1A1*6 polymorphism was a risk factor of irinotecan-related diarrhea and anemia. The UGT1A1*28 polymorphism may serve a protective role in irinotecan-related abdominal pain and diarrhea. Both mutations had a tendency to be risk factors for survival. Nevertheless, prospective studies are required to verify such conclusions.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Feifei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zijun Zhen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Dalei Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Suying Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Junting Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yi Que
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lian Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ruiqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|