1
|
Tian Y, Du S, Liu H, Yu H, Bai R, Su H, Guo X, He Y, Song Z, Chen Y, Li Q, Wang J, Huang W, Rong L. Prospective, multicenter, self-controlled clinical trial on the effectiveness and safety of a cable-transmission magnetically controlled capsule endoscopy system for the examination of upper GI diseases (with video). Gastrointest Endosc 2025; 101:804-817.e1. [PMID: 39111392 DOI: 10.1016/j.gie.2024.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND AND AIMS Many GI disorders and precancerous conditions often present asymptomatically, leading to delayed patient diagnoses and treatment interventions. In this study, we developed a novel cable-transmission magnetically controlled capsule endoscopy (CT-MCCE) system for detecting GI diseases and assessed its safety and feasibility through clinical trials. METHODS This prospective, multicenter trial compared CT-MCCE with conventional gastroscopy in patients aged 18 to 75 years with upper GI tract diseases between October 2022 and July 2023. The primary endpoints were the evaluation of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) in the detection of focal lesions within the esophagus, stomach, and duodenal bulb using CT-MCCE. RESULTS One hundred eighty individuals (mean age, 43.1 years; 52.22% women) were recruited from 3 hospitals in China. CT-MCCE detected lesions in the esophagus with a sensitivity of 97.22%, specificity of 100%, PPV of 100%, NPV of 98.18%, and accuracy of 98.89%; detected gastric focal lesions in the entire stomach with a sensitivity of 96.81%, specificity of 98.84%, PPV of 98.91%, NPV of 96.59%, and accuracy of 97.78%; and detected lesions in the duodenal bulb with a sensitivity of 100%, specificity of 100%, PPV of 100%, NPV of 100%, and accuracy of 100%. There were no significant differences between CT-MCCE and EGD regarding the cleanliness of the upper GI tract and visibility of the upper GI mucosa. However, CT-MCCE was associated with a lower incidence of discomfort than EGD (P < .001). CONCLUSIONS The diagnostic performance of CT-MCCE is comparable with that of EGD in the completion of upper GI tract examinations and lesion detection. Furthermore, the improved tolerance of CT-MCCE in detecting upper GI diseases was noted without any observed adverse events. (Clinical trial registration number: ChiCTR2200063630.).
Collapse
Affiliation(s)
- Yuan Tian
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Shiyu Du
- Gastroenterology Department, China-Japan Friendship Hospital, Beijing, China
| | - Hong Liu
- Gastroenterology Department, Capital Medical University affiliated Beijing Shijitan Hospital, Beijing, China
| | - Hang Yu
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Ruxue Bai
- Gastroenterology Department, China-Japan Friendship Hospital, Beijing, China
| | - Hui Su
- Gastroenterology Department, Capital Medical University affiliated Beijing Shijitan Hospital, Beijing, China
| | - Xinyue Guo
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Yan He
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| | - Zhenmei Song
- Gastroenterology Department, China-Japan Friendship Hospital, Beijing, China
| | - Yanming Chen
- Gastroenterology Department, China-Japan Friendship Hospital, Beijing, China
| | - Qian Li
- Gastroenterology Department, Capital Medical University affiliated Beijing Shijitan Hospital, Beijing, China
| | - Jing Wang
- Gastroenterology Department, Capital Medical University affiliated Beijing Shijitan Hospital, Beijing, China
| | | | - Long Rong
- Department of Endoscopy Center, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Dai Y, Zheng YS, Yang WL, Chen GY, Wu JH, Zhang HB, Chen JH, Xu GX, Wang HX. Positioning exercises in improving the quality of magnetic-controlled capsule endoscopy. BMC Gastroenterol 2024; 24:313. [PMID: 39285368 PMCID: PMC11406967 DOI: 10.1186/s12876-024-03405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Good gastric preparation is indispensable for Magnetic-controlled Capsule Endoscopy (MCE) examination, but there is no consensus yet. We aim to explore the clinical application value of positioning exercises in improving the quality of MCE examination. METHODS Clinical data of 326 patients who underwent MCE examination from January 2020 to December 2023 were collected. The included patients were divided into two groups: the conventional medication preparation group (CMP group, accepted mucosal cleansing medication only) and the positioning exercises group (PE group, accepted mucosal cleansing medication plus positioning exercises). A comparison was made between the two groups in terms of gastric cavity cleanliness score, visibility score, and detection rate of positive lesions. RESULTS The examination time was (21.29 ± 5.82) minutes in the PE group and (30.54 ± 6.37) minutes in the CMP group, showing a significant difference between the two groups (P < 0.001). The total cleanliness score and visibility score in the CMP group were 15.89 ± 2.82 and 10.93 ± 2.12, respectively. In contrast, the total cleanliness score and visibility score in the PE group were 19.52 ± 2.26 and 15.09 ± 2.31, respectively. The PE group showed significantly better cleanliness scores and visibility scores in all six anatomical regions compared to the CMP group (All P < 0.001). However, there was no significant difference in the detection rate of positive lesions between the two groups (All P > 0.05). CONCLUSION Positioning exercises before MCE examination can improve the quality of gastric mucosal images and reduce the duration of the examination for patients.
Collapse
Affiliation(s)
- Yun Dai
- Department of Endoscopy, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Yong-Sheng Zheng
- Department of Endoscopy, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Wei-Lin Yang
- Department of Endoscopy, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Guang-Yi Chen
- Department of Endoscopy, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Jian-Hai Wu
- Department of Endoscopy, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Hong-Bin Zhang
- Department of Endoscopy, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Jin-Hai Chen
- Department of Endoscopy, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Guo-Xing Xu
- Department of Endoscopy, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China
| | - Hai-Xing Wang
- Department of Endoscopy, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, Fujian, 361003, China.
| |
Collapse
|
3
|
Rosa B, Cúrdia Gonçalves T, Moreira MJ, Dias de Castro F, Sousa-Pinto B, Dinis-Ribeiro M, Cotter J. Pan-intestinal capsule endoscopy as first-line procedure in patients with suspected mid or lower gastrointestinal bleeding. Endoscopy 2024; 56:572-580. [PMID: 38365215 DOI: 10.1055/a-2270-4601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
BACKGROUND Pan-intestinal capsule endoscopy (PCE) evaluates the small bowel and colon noninvasively. This study evaluated diagnostic accuracy and safety of PCE vs. colonoscopy as first-line examination in suspected mid-lower gastrointestinal bleeding (MLGIB). METHODS In this prospective, single-center, single-blinded cohort study, consecutive patients with suspected MLGIB underwent PCE followed by same-day colonoscopy. Diagnostic accuracy for potentially hemorrhagic lesions (PHLs; combined diagnosis by PCE + colonoscopy) and incidence of adverse events were assessed. RESULTS 100 patients were included (median age 70 [range 18-92] years; 65% female). PHLs were diagnosed in 46 patients, including small-bowel and/or colon angioectasias in 32. PCE correctly identified 54 individuals without PHLs, and 95.7% (44/46) of those with PHLs vs. 50.0% (23/46) for colonoscopy (P<0.01). PHLs were detected by PCE alone in 65.2% (30/46), both examinations in 28.3% (13/46), and colonoscopy alone in 6.5% (3/46). PHLs were diagnosed at the ileocolonic region in 28% of patients, with PCE diagnosing 25/28 cases (89.3%) and colonoscopy diagnosing 23/28 (82.1%; P=0.13). Interventional procedures were performed at colonoscopy in 13/81 patients with iron-deficiency anemia (16.0%) vs. 6/19 patients with overt bleeding (31.6%; P<0.01). No significant adverse events occurred with PCE vs. 2% with colonoscopy. CONCLUSIONS In patients with MLGIB, PCE avoided further invasive procedures in >50% of patients. PCE was safe and more effective than colonoscopy in identifying PHL both in the small bowel and colon. These results support the potential use of PCE as first-line examination in patients with suspected MLGIB.
Collapse
Affiliation(s)
- Bruno Rosa
- Department of Gastroenterology, Hospital da Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Tiago Cúrdia Gonçalves
- Department of Gastroenterology, Hospital da Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Maria J Moreira
- Department of Gastroenterology, Hospital da Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Francisca Dias de Castro
- Department of Gastroenterology, Hospital da Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Bernardo Sousa-Pinto
- MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS, Center for Health Technology and Services Research, University of Porto, Porto, Portugal
| | - Mário Dinis-Ribeiro
- MEDCIDS, Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
- RISE@CI-IPO (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - José Cotter
- Department of Gastroenterology, Hospital da Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
4
|
Li J, Ren M, Ren L, Luo Y, Sun H, Zhang Z, He S, Lu G. The standardized training and assessment system for magnetically controlled capsule gastroscopy (with video). Scand J Gastroenterol 2024; 59:989-995. [PMID: 38742832 DOI: 10.1080/00365521.2024.2354424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND AIM To explore the feasibility of a standardized training and assessment system for magnetically controlled capsule gastroscopy (MCCG). METHODS The results of 90 trainees who underwent the standardized training and assessment system of the MCCG at the First Affiliated Hospital of Xi'an Jiaotong University from May 2020 to November 2023 was retrospectively analyzed. The trainees were divided into three groups according to their medical backgrounds: doctor, nurse, and non-medical groups. The training and assessment system adopted the '7 + 2' mode, seven days of training plus two days of theoretical and operational assessment. The passing rates of theoretical, operational, and total assessment were the primary outcomes. Satisfaction and mastery of the MCCG was checked. RESULTS Ninety trainees were assessed; theoretical assessment's passing rates in the three groups were 100%. The operational and total assessment passing rates were 100% (25/25), 97.92% (47/48), and 94.12% (16/17), for the doctor, nurse, and non-doctor groups respectively, with no significant difference (χ2 = 1.741, p = 0.419). No bleeding or perforation occurred during the procedure. Approximately, 96.00% (24/25), 95.83% (46/48), and 94.12% (16/17) of the doctor, nurse and non-medical groups anonymously expressed great satisfaction, respectively, without statistically significant difference (χ2 = 0.565, p = 1.000). The average follow-up time was 4-36 months, and 87 trainees (96.67%) had mastered the operation of the MCCG in daily work. CONCLUSIONS Standardized training and assessment of magnetically controlled capsule endoscopists is effective and feasible. Additionally, a strict assessment system and long-term communication and learning can improve teaching effects.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Devision), Xi'an, Shaanxi, China
| | - Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Devision), Xi'an, Shaanxi, China
| | - Li Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Devision), Xi'an, Shaanxi, China
| | - Yumei Luo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Devision), Xi'an, Shaanxi, China
| | - Huanhuan Sun
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Devision), Xi'an, Shaanxi, China
| | - Zhiyong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Devision), Xi'an, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Devision), Xi'an, Shaanxi, China
| | - Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shannxi Clinical Research Center of Digestive Disease (Cancer Devision), Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Oh DJ, Lee YJ, Kim SH, Chung J, Lee HS, Nam JH, Lim YJ. Efficacy and safety of three-dimensional magnetically assisted capsule endoscopy for upper gastrointestinal and small bowel examination. PLoS One 2024; 19:e0295774. [PMID: 38713694 DOI: 10.1371/journal.pone.0295774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/27/2023] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Magnetically assisted capsule endoscopy (MACE) showed the feasibility for upper gastrointestinal examination. To further enhance the performance of conventional MACE, it is necessary to provide quality-improved and three-dimensional images. The aim of this clinical study was to determine the efficacy and safety of novel three-dimensional MACE (3D MACE) for upper gastrointestinal and small bowel examination at once. METHODS This was a prospective, single-center, non-randomized, and sequential examination study (KCT0007114) at Dongguk University Ilsan Hospital. Adult patients who visited for upper endoscopy were included. The study protocol was conducted in two stages. First, upper gastrointestinal examination was performed using 3D MACE, and a continuous small bowel examination was performed by conventional method of capsule endoscopy. Two hours later, an upper endoscopy was performed for comparison with 3D MACE examination. The primary outcome was confirmation of major gastric structures (esophagogastric junction, cardia/fundus, body, angle, antrum, and pylorus). Secondary outcomes were confirmation of esophagus and duodenal bulb, accuracy for gastric lesions, completion of small bowel examination, 3D image reconstruction of gastric lesion, and safety. RESULTS Fifty-five patients were finally enrolled. The examination time of 3D MACE was 14.84 ± 3.02 minutes and upper endoscopy was 5.22 ± 2.39 minutes. The confirmation rate of the six major gastric structures was 98.6% in 3D MACE and 100% in upper endoscopy. Gastric lesions were identified in 43 patients during 3D MACE, and 40 patients during upper endoscopy (Sensitivity 0.97). 3D reconstructed images were acquired for all lesions inspected by 3D MACE. The continuous small bowel examination by 3D MACE was completed in 94.5%. 3D MACE showed better overall satisfaction (3D MACE 9.55 ± 0.79 and upper endoscopy 7.75 ± 2.34, p<0.0001). There were no aspiration or significant adverse event or capsule retention in the 3D MACE examination. CONCLUSIONS Novel 3D MACE system is more advanced diagnostic modality than the conventional MACE. And it is possible to perform serial upper gastrointestinal and small bowel examination as a non-invasive and one-step test. It would be also served as a bridge to pan-endoscopy.
Collapse
Affiliation(s)
- Dong Jun Oh
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Yea Je Lee
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Sang Hoon Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Joowon Chung
- Department of Internal Medicine, Nowon Eulji Medical Center, Seoul, Republic of Korea
| | - Hyun Seok Lee
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ji Hyung Nam
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
6
|
Hanscom M, Cave DR. Endoscopic capsule robot-based diagnosis, navigation and localization in the gastrointestinal tract. Front Robot AI 2022; 9:896028. [PMID: 36119725 PMCID: PMC9479458 DOI: 10.3389/frobt.2022.896028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/08/2022] [Indexed: 01/10/2023] Open
Abstract
The proliferation of video capsule endoscopy (VCE) would not have been possible without continued technological improvements in imaging and locomotion. Advancements in imaging include both software and hardware improvements but perhaps the greatest software advancement in imaging comes in the form of artificial intelligence (AI). Current research into AI in VCE includes the diagnosis of tumors, gastrointestinal bleeding, Crohn’s disease, and celiac disease. Other advancements have focused on the improvement of both camera technologies and alternative forms of imaging. Comparatively, advancements in locomotion have just started to approach clinical use and include onboard controlled locomotion, which involves miniaturizing a motor to incorporate into the video capsule, and externally controlled locomotion, which involves using an outside power source to maneuver the capsule itself. Advancements in locomotion hold promise to remove one of the major disadvantages of VCE, namely, its inability to obtain targeted diagnoses. Active capsule control could in turn unlock additional diagnostic and therapeutic potential, such as the ability to obtain targeted tissue biopsies or drug delivery. With both advancements in imaging and locomotion has come a corresponding need to be better able to process generated images and localize the capsule’s position within the gastrointestinal tract. Technological advancements in computation performance have led to improvements in image compression and transfer, as well as advancements in sensor detection and alternative methods of capsule localization. Together, these advancements have led to the expansion of VCE across a number of indications, including the evaluation of esophageal and colon pathologies including esophagitis, esophageal varices, Crohn’s disease, and polyps after incomplete colonoscopy. Current research has also suggested a role for VCE in acute gastrointestinal bleeding throughout the gastrointestinal tract, as well as in urgent settings such as the emergency department, and in resource-constrained settings, such as during the COVID-19 pandemic. VCE has solidified its role in the evaluation of small bowel bleeding and earned an important place in the practicing gastroenterologist’s armamentarium. In the next few decades, further improvements in imaging and locomotion promise to open up even more clinical roles for the video capsule as a tool for non-invasive diagnosis of lumenal gastrointestinal pathologies.
Collapse
|