1
|
Ko DK, Lee H, Lee H, Kang N. Bilateral ankle dorsiflexion force control impairments in older adults. PLoS One 2025; 20:e0319578. [PMID: 40112015 PMCID: PMC11925285 DOI: 10.1371/journal.pone.0319578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
Age-related impairments in ankle dorsiflexion force modulation are associated with gait and balance control deficits and greater fall risk in older adults. This study aimed to investigate age-related changes in bilateral ankle dorsiflexion force control capabilities compared with those for younger adults. The study enrolled 25 older and 25 younger adults. They performed bilateral ankle dorsiflexion force control at 10% and 40% of maximum voluntary contraction (MVC), for vision and no-vision conditions, respectively. Bilateral force control performances were evaluated by calculating force accuracy, variability, and complexity. To estimate bilateral force coordination between feet, vector coding and uncontrolled manifold variables were quantified. Additional correlation analyses were performed to determine potential relationships between age and force control variables in older adults. Older adults demonstrated significantly lower force accuracy with greater overshooting at 10% of MVC than those for younger adults. At 10% and 40% of MVC, older adults significantly showed more variable and less complex force outputs, and these patterns appeared in both vision and no-vision conditions. Moreover, older adults revealed significantly less anti-phase force coordination patterns and lower bilateral motor synergies with increased bad variability than younger adults. The correlation analyses found that lower complexity of bilateral forces was significantly related to increased age. These findings suggest that aging may impair sensorimotor control capabilities in the lower extremities. Considering the importance of ankle dorsiflexion for executing many activities of daily living, future studies may focus on developing training programs for advancing bilateral ankle dorsiflexion force control capabilities.
Collapse
Affiliation(s)
- Do-Kyung Ko
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hajun Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
- Division of Sport Science, Sport Science Institute and Health Promotion Center, Incheon National University, Incheon, South Korea
| |
Collapse
|
2
|
Dottor A, Battista S, Job M, Sansone LG, Testa M. Force control of pinch grip: Normative data of a holistic evaluation. J Hand Ther 2025; 38:129-142. [PMID: 39232859 DOI: 10.1016/j.jht.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Pulp pinch (PP) is a vital hand movement involving muscle strength and sensory integration. Previous research has primarily focused on Maximal Voluntary Contraction, but PP encompasses broader parameters. PURPOSE This study aims to establish normative data for a comprehensive evaluation of thumb and index force control during PP, including endurance, precision, accuracy in unilateral PP, and force coordination in bilateral PP. STUDY DESIGN A cross-sectional study. METHODS Three hundred and twenty eight healthy Italian cis-gender participants (169 females, 159 males) were enrolled in a multiparametric force control evaluation of pinch grip, consisting in: sustained contraction (SC: ability to maintain a stable contraction at 40% MVC, measured as the time until exhaustion), dynamic contraction (DC: the ability to modulate precisely and accurately force output to follow a dynamic force trace), bimanual strength coordination (BSC: the ability to coordinate in-phase bimanual forces at different combined magnitudes) tasks. The sample was divided per sex and stratified in five age groups taking into account hand dominance. Differences in tasks' results between age, sex and hand-dominance were analysed. RESULTS Endurance (SC) was similar between younger and older adults (η2 =0.047 (Females) and η2 < 0.007 (Males)). Older adults exhibited lower precision (DC) and coordination (BSC) compared to young adults in both sexes (η2 >0.16). Females demonstrated greater endurance (SC) but lower precision and coordination (BSC) compared to males (0.01 <η2 <0.1). No hand dominance effect emerged in SC and DC. CONCLUSIONS Force accuracy and precision to modulate pinch force to perform a visual feedback force-matching task (DC) and force coordination between hands (BSC) worsen at increasing age. Hand dominance did not influence either endurance or precision of pinch grip in visual-feedback guided task.
Collapse
Affiliation(s)
- Alberto Dottor
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Simone Battista
- School of Health & Society, Centre for Human Movement and Rehabilitation, University of Salford, Greater Manchester, UK
| | - Mirko Job
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Lucia Grazia Sansone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Marco Testa
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.
| |
Collapse
|
3
|
Zaidi KF, Wei Q. Temporal localization of upper extremity bilateral synergistic coordination using wearable accelerometers. PeerJ 2024; 12:e17858. [PMID: 39247546 PMCID: PMC11378761 DOI: 10.7717/peerj.17858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/13/2024] [Indexed: 09/10/2024] Open
Abstract
Background The human upper extremity is characterized by inherent motor abundance, allowing a diverse array of tasks with agility and adaptability. Upper extremity functional limitations are a common sequela to Stroke, resulting in pronounced motor and sensory impairments in the contralesional arm. While many therapeutic interventions focus on rehabilitating the weaker arm, it is increasingly evident that it is necessary to consider bimanual coordination and motor control. Methods Participants were recruited to two groups differing in age (Group 1 (n = 10): 23.4 ± 2.9 years, Group 2 (n = 10): 55.9 ± 10.6 years) for an exploratory study on the use of accelerometry to quantify bilateral coordination. Three tasks featuring coordinated reaching were selected to investigate the acceleration of the upper arm, forearm, and hand during activities of daily living (ADLs). Subjects were equipped with acceleration and inclination sensors on each upper arm, each forearm, and each hand. Data was segmented in MATLAB to assess inter-limb and intra-limb coordination. Inter-limb coordination was indicated through dissimilarity indices and temporal locations of congruous movement between upper arm, forearm, or hand segments of the right and left limbs. Intra-limb coordination was likewise assessed between upper arm-forearm, upper arm-hand, and forearm-hand segment pairs of the dominant limb. Findings Acceleration data revealed task-specific movement features during the three distinct tasks. Groups demonstrated diminished similarity as task complexity increased. Groups differed significantly in the hand segments during the buttoning task, with Group 1 showing no coordination in the hand segments during buttoning, and strong coordination in reaching each button with the upper arm and forearm guiding extension. Group 2's dissimilarity scores and percentages of similarity indicated longer periods of inter-limb coordination, particularly towards movement completion. Group 1's dissimilarity scores and percentages of similarity indicated longer periods of intra-limb coordination, particularly in the coordination of the upper arm and forearm segments. Interpretation The Expanding Procrustes methodology can be applied to compute objective coordination scores using accessible and highly accurate wearable acceleration sensors. The findings of task duration, angular velocity, and peak roll angle are supported by previous studies finding older individuals to present with slower movements, reduced movement stability, and a reduction of laterality between the limbs. The theory of a shift towards ambidexterity with age is supported by the finding of greater inter-limb coordination in the group of subjects above the age of thirty-five. The group below the age of thirty was found to demonstrate longer periods of intra-limb coordination, with upper arm and forearm coordination emerging as a possible explanation for the demonstrated greater stability.
Collapse
Affiliation(s)
- Khadija F Zaidi
- Department of Bioengineering, George Mason University, Fairfax, VA, United States of America
| | - Qi Wei
- Department of Bioengineering, George Mason University, Fairfax, VA, United States of America
| |
Collapse
|
4
|
de Freitas PB, Freitas SMSF, Dias MS. Synergic control of the minimum toe clearance in young and older adults during foot swing on treadmill walking in different speeds. Gait Posture 2024; 111:150-155. [PMID: 38703443 DOI: 10.1016/j.gaitpost.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The vertical toe position at minimum toe clearance (MTC) in the swing phase is critical for walking safety. Consequently, the joints involved should be strictly controlled and coordinated to stabilize the foot at MTC. The uncontrolled manifold (UCM) hypothesis framework has been used to determine the existence of synergies that stabilize relevant performance variables during walking. However, no study investigated the presence of a multi-joint synergy stabilizing the foot position at MTC and the effects of age and walking speed on this synergy. RESEARCH QUESTIONS Is there a multi-joint synergy stabilizing MTC during treadmill walking? Does it depend on the persons' age and walking speed? METHODS Kinematic data from 23 young and 15 older adults were analyzed using the UCM approach. The participants walked on a treadmill at three speeds: slow, self-selected, and fast. The sagittal and frontal joint angles from the swing and stance legs and pelvis obliquity were used as motor elements and the vertical toe position at MTC was the performance variable. The variances in the joint space that affected (VORT, 'bad' variance) and did not affect (VUCM, 'good' variance) the toe position at MTC and the synergy index (ΔV) were computed. RESULTS The ΔV>0 was revealed for all subjects. Walking speed did not affect ΔV in older adults, whereas ΔV reduced with speed in young adults. ΔV was higher for older than for young adults at self-selected and fast speeds, owing to a lower VORT in the older group. SIGNIFICANCE The vertical toe position at MTC was stabilized by a strong multi-joint synergy. In older adults, this synergy was stronger, as they were better at limiting VORT than young adults. Reduced VORT in older adults could be caused by more constrained walking, which may be associated with anxiety due to walking on a treadmill.
Collapse
Affiliation(s)
- Paulo B de Freitas
- Interdisciplinary Graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, Rua Galvão Bueno, 868, Liberdade, São Paulo, SP 01506-000, Brazil.
| | - Sandra M S F Freitas
- Graduate Program in Physical Therapy. Universidade Cidade de São Paulo, São Paulo, Rua Cesário Galeno, 475, Tatuapé, São Paulo, SP 03071-000, Brazil.
| | - Mateus S Dias
- Interdisciplinary Graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, Rua Galvão Bueno, 868, Liberdade, São Paulo, SP 01506-000, Brazil.
| |
Collapse
|
5
|
Pan Z, Fang Q, Watson DM, Van Gemmert AWA, Aiken CA. Aging reduces manual dexterity and force production asymmetries between the hands. Laterality 2023; 28:239-253. [PMID: 37368942 DOI: 10.1080/1357650x.2023.2226890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Age-related effects on motor asymmetry provide insight into changes in cortical activation during aging. To investigate potential changes in manual performance associated with aging, we conducted the Jamar hand function test and the Purdue Pegboard test on young and older adults. All tests indicated reduced motor asymmetry in the older group. Further analysis suggested that a significant decline in dominant (right) hand function resulted in less asymmetric performance in older adults. The finding is inconsistent with the application of the HAROLD model in the motor domain, which assumes improved performance in the non-dominant hand, leading to a reduction of motor asymmetry in older adults. Based on the manual performance in young and older adults, it is suggested that aging reduces manual asymmetry in both force production and manual dexterity due to the reduced performance of the dominant hand.
Collapse
Affiliation(s)
- Zhujun Pan
- Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | - Qun Fang
- Department of Kinesiology, Mississippi State University, Starkville, MS, USA
- Qingdao University, Qingdao, People's Republic of China
| | - Deborah M Watson
- Department of Kinesiology, Mississippi State University, Starkville, MS, USA
| | | | | |
Collapse
|
6
|
Lee JH, Kang N. Altered Bimanual Kinetic and Kinematic Motor Control Capabilities in Older Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2153. [PMID: 36767520 PMCID: PMC9915092 DOI: 10.3390/ijerph20032153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Older women may experience critical neuromuscular impairments interfering with controlling successful bimanual motor actions. Our study aimed to investigate altered bimanual motor performances in older women compared with younger women by focusing on kinetic and kinematic motor properties. Twenty-two older women and 22 younger women performed bimanual kinetic and kinematic motor tasks. To estimate bimanual kinetic functions, we calculated bimanual maximal voluntary contractions (i.e., MVC) and force control capabilities (i.e., mean force, accuracy, variability, and regularity of the total force produced by two hands) during bimanual hand-grip submaximal force control tasks. For bimanual kinematic performances, we assessed the scores of the Purdue Pegboard Test (i.e., PPT) in both hands and assembly tasks, respectively. For the bimanual MVC and PPT, we conducted an independent t-test between two groups. The bimanual force control capabilities were analyzed using two-way mixed ANOVAs (Group × Force Level; 2 × 2). Our findings revealed that the older women showed less bimanual MVC (p = 0.046) and submaximal force outputs (p = 0.036) and greater changes in bimanual force control capabilities as indicated by a greater force variability (p = 0.017) and regularity (p = 0.014). Further, the older women revealed lower scores of PPT in both the hands condition (p < 0.001) and assembly task condition (p < 0.001). The additional correlation analyses for the older women showed that lower levels of skeletal muscle mass were related to less bimanual MVC (r = 0.591; p = 0.004). Furthermore, a higher age was related to lower scores in the bimanual PPT assembly task (r = -0.427; p = 0.048). These findings suggested that older women experience greater changes in bimanual motor functions compared with younger women.
Collapse
Affiliation(s)
- Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon 22012, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon 22012, Republic of Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon 22012, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon 22012, Republic of Korea
- Division of Sport Science, Sport Science Institute, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
7
|
Guo J, Liu T, Wang J. Effects of auditory feedback on fine motor output and corticomuscular coherence during a unilateral finger pinch task. Front Neurosci 2022; 16:896933. [DOI: 10.3389/fnins.2022.896933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Auditory feedback is important to reduce movement error and improve motor performance during a precise motor task. Accurate motion guided by auditory feedback may rely on the neural muscle transmission pathway between the sensorimotor area and the effective muscle. However, it remains unclear how neural activities and sensorimotor loops play a role in enhancing performance. The present study uses an auditory feedback system by simultaneously recording electroencephalogram (EEG), electromyography (EMG), and exert force information to measure corticomuscular coherence (CMC), neural activity, and motor performance during precise unilateral right-hand pinch by using the thumb and the index finger with and without auditory feedback. This study confirms three results. First, compared with no auditory feedback, auditory feedback decreases movement errors. Second, compared with no auditory feedback, auditory feedback decreased the power spectrum in the beta band in the bimanual sensorimotor cortex and the alpha band in the ipsilateral sensorimotor cortex. Finally, CMC was computed between effector muscle of right hand and contralateral sensorimotor cortex. Analyses reveals that the CMC of beta band significantly decreases in auditory feedback condition compared with no auditory feedback condition. The results indicate that auditory feedback decreases the power spectral in the alpha and beta bands and decreases corticospinal connection in the beta band during precise hand control. This study provides a new perspective on the effect of auditory feedback on behavior and brain activity and offers a new idea for designing more suitable and effective rehabilitation and training strategies to improve fine motor performance.
Collapse
|
8
|
Higher visual gain contributions to bilateral motor synergies and force control. Sci Rep 2022; 12:18271. [PMID: 36316473 PMCID: PMC9622729 DOI: 10.1038/s41598-022-23274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
This study investigated the effects of altered visual gain levels on bilateral motor synergies determined by the uncontrolled manifold (UCM) hypothesis and force control. Twelve healthy participants performed bimanual index finger abduction force control tasks at 20% of their maximal voluntary contraction across four different visual gain conditions: 8, 80, 256, and 512 pixels/N. Quantifying force accuracy and variability within a trial provided a bimanual force control outcome. The UCM analysis measured bilateral motor synergies, a proportion of good variance to bad variance across multiple trials. Correlation analyses determined whether changes in the UCM variables were related to changes in force control variables from the lowest to highest visual gain conditions, respectively. Multiple analyses indicated that the three highest visual gain conditions in comparison to the lowest visual gain increased values of bilateral motor synergies and target force accuracy. The correlation findings showed that a reduction of bad variance from the lowest to three highest visual gain conditions was related to increased force accuracy. These findings reveal that visual gain greater than 8 pixels/N facilitates bimanual force control.
Collapse
|
9
|
Yamagata M, Tateuchi H, Shimizu I, Ichihashi N. Changes in kinematic synergy in older adults during walking: A two-year follow-up study. Gait Posture 2022; 96:244-250. [PMID: 35700642 DOI: 10.1016/j.gaitpost.2022.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND A well-controlled center of mass (CoM) in a coordinated segmental manner is required during gait. A synergy index that quantifies the strength of the synergistic control of the body segments that control the CoM can be evaluated using uncontrolled manifold (UCM) analysis. Several studies have compared the synergy index between older and younger adults; however, contradictory results have been found regarding age-related changes in the synergy index. Moreover, no study has investigated these changes longitudinally. RESEARCH QUESTION To evaluate age-related changes in the synergy index to control the CoM during gait in a longitudinal study. METHODS Twenty-five older adults participated at a baseline visit. The gait task at the two-year follow-up was completed by 16 older adults. Participants walked on a 6-m walkway at baseline and the two-year follow-up, and kinematic data were collected. Using UCM analysis, the synergy indices controlling CoM in the mediolateral and vertical directions were evaluated at baseline and follow-up. We also evaluated the Timed Up and Go (TUG) test and the strength of the knee extensor at both periods. RESULTS We found that TUG was significantly slower at follow-up; however, no difference was found in muscle strength. The synergy index in the mediolateral direction increased significantly after two years; such increases were found in individuals with decreased gait speed. SIGNIFICANCE This study showed that changes in gait patterns, including decreasing gait speed and increasing segmental coordination, may be important for gait with appropriate postural control relative to the environment and dynamic stability of the body in individuals with low functional mobility.
Collapse
Affiliation(s)
- Momoko Yamagata
- Faculty of Rehabilitation, Kansai Medical University, 18-89 Uyama Higashimachi, Hirakata, Osaka 573-1136, Japan; Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hiroshige Tateuchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Itsuroh Shimizu
- Fukui General Clinic, 1-42-1 Nittazuka, Fukui-shi,Fukui 910-0067, Japan
| | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
10
|
Rattanawan P. Correlations between Hand Dexterity and Bimanual Coordination on the Activities of Daily Living in Older Adults with Mild Cognitive Impairment. Dement Geriatr Cogn Dis Extra 2022; 12:24-32. [PMID: 35432440 PMCID: PMC8958629 DOI: 10.1159/000521644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background/Aims Many motor impairments are present in older adults with cognitive decline. One of them is the impairment of hand dexterity and bimanual coordination that result in poor functional ability in the activities of daily living (ADL). This study investigated the effects of hand dexterity and bimanual coordination declination on the sub-domains of ADL in older adults with mild cognitive impairment (MCI). Methods Thirty-one senior individuals with MCI were recruited in this study. The Purdue Pegboard Test was used to measure hand dexterity, and bimanual coordination was assessed by the continuous circle-drawing task. Their ADL were assessed with the General Activity Daily Living questionnaire. Results The correlations analysis showed an association between the dominant hand and bimanual dexterity with the domestic domain of ADL and all conditions of hand dexterity with the complex domain of ADL. Moreover, the multiple regression analysis showed that the predictor of the greatest effect for domestic and complex domains was dominant hand dexterity. Discussion/Conclusion These results revealed that dominant hand dexterity strongly affected domestic and complex ADL in older adults with MCI. There were age-related changes regarding lateral asymmetrical motor reduction, especially in cognitive tasks. However, complex tasks involving cognitive function may need dominant, nondominant and bimanual hand dexterity.
Collapse
|
11
|
Visual feedback improves bimanual force control performances at planning and execution levels. Sci Rep 2021; 11:21149. [PMID: 34707163 PMCID: PMC8551182 DOI: 10.1038/s41598-021-00721-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to determine the effect of different visual conditions and targeted force levels on bilateral motor synergies and bimanual force control performances. Fourteen healthy young participants performed bimanual isometric force control tasks by extending their wrists and fingers under two visual feedback conditions (i.e., vision and no-vision) and three targeted force levels (i.e., 5%, 25%, and 50% of maximum voluntary contraction: MVC). To estimate bilateral motor synergies across multiple trials, we calculated the proportion of good variability relative to bad variability using an uncontrolled manifold analysis. To assess bimanual force control performances within a trial, we used the accuracy, variability, and regularity of total forces produced by two hands. Further, analysis included correlation coefficients between forces from the left and right hands. In addition, we examined the correlations between altered bilateral motor synergies and force control performances from no-vision to vision conditions for each targeted force level. Importantly, our findings revealed that the presence of visual feedback increased bilateral motor synergies across multiple trials significantly with a reduction of bad variability as well as improved bimanual force control performances within a trial based on higher force accuracy, lower force variability, less force regularity, and decreased correlation coefficients between hands. Further, we found two significant correlations in (a) increased bilateral motor synergy versus higher force accuracy at 5% of MVC and (b) increased bilateral motor synergy versus lower force variability at 50% of MVC. Together, these results suggested that visual feedback effectively improved both synergetic coordination behaviors across multiple trials and stability of task performance within a trial across various submaximal force levels.
Collapse
|
12
|
Sun C, Chu K, Miao Q, Ping L, Zhong W, Qi S, Zhang M. Bilateral Asymmetry of Hand Force Production in Dynamic Physically-Coupled Tasks. IEEE J Biomed Health Inform 2021; 26:1826-1834. [PMID: 34520381 DOI: 10.1109/jbhi.2021.3112201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Physically-coupled bimanual tasks (activities where a force effect occurs between two human limbs) involve the coordination and cooperation of bilateral arms. Such uncertain contribution of two arms is often studied under static configuration, which is not sufficient to typify all activities of daily life (ADLs). This study aims to investigate peoples bilateral force production and control in dynamic tasks. Experiments were conducted with a customized robotic system that is characterized with two handles and programmable force fields between them. Fourteen healthy right-handed human volunteers were instructed to generate force with each hand when performing predefined trajectory tracking tasks, in which the sum of forces contributed by the left and the right hand is required to equal a target force. Significant asymmetry was found in the force output between bilateral hands. With the homologous muscles activated synchronously, the contribution of the left hand was larger, while when the non-homogenous muscles were activated synchronously, the laterality was subject to the moving direction. In addition, when considering the force difference between two hands in terms of direction and magnitude, the former decreased with the increase of the target force, but the latter was more sensitive to moving directions. The results reveal the unique characteristics of non-isometric force control tasks compared with isometric ones.
Collapse
|
13
|
Latash ML. One more time about motor (and non-motor) synergies. Exp Brain Res 2021; 239:2951-2967. [PMID: 34383080 DOI: 10.1007/s00221-021-06188-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
We revisit the concept of synergy based on the recently translated classical book by Nikolai Bernstein (On the construction of movements, Medgiz, Moscow 1947; Latash, Bernstein's Construction of Movements, Routledge, Abingdon 2020b) and progress in understanding the physics and neurophysiology of biological action. Two aspects of synergies are described: organizing elements into stable groups (modes) and ensuring dynamical stability of salient performance variables. The ability of the central nervous system to attenuate synergies in preparation for a quick action-anticipatory synergy adjustments-is emphasized. Recent studies have demonstrated synergies at the level of hypothetical control variables associated with spatial referent coordinates for effectors. Overall, the concept of synergies fits naturally the hierarchical scheme of control with referent coordinates with an important role played by back-coupling loops within the central nervous system and from peripheral sensory endings. Further, we review studies showing non-trivial changes in synergies with development, aging, fatigue, practice, and a variety of neurological disorders. Two aspects of impaired synergic control-impaired stability and impaired agility-are introduced. The recent generalization of the concept of synergies for non-motor domains, including perception, is discussed. We end the review with a list of unresolved and troubling issues.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
14
|
Kenville R, Maudrich T, Vidaurre C, Maudrich D, Villringer A, Ragert P, Nikulin VV. Intermuscular coherence between homologous muscles during dynamic and static movement periods of bipedal squatting. J Neurophysiol 2020; 124:1045-1055. [PMID: 32816612 PMCID: PMC7742219 DOI: 10.1152/jn.00231.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Coordination of functionally coupled muscles is a key aspect of movement execution. Demands on coordinative control increase with the number of involved muscles and joints, as well as with differing movement periods within a given motor sequence. While previous research has provided evidence concerning inter- and intramuscular synchrony in isolated movements, compound movements remain largely unexplored. With this study, we aimed to uncover neural mechanisms of bilateral coordination through intermuscular coherence (IMC) analyses between principal homologous muscles during bipedal squatting (BpS) at multiple frequency bands (alpha, beta, and gamma). For this purpose, participants performed bipedal squats without additional load, which were divided into three distinct movement periods (eccentric, isometric, and concentric). Surface electromyography (EMG) was recorded from four homologous muscle pairs representing prime movers during bipedal squatting. We provide novel evidence that IMC magnitudes differ between movement periods in beta and gamma bands, as well as between homologous muscle pairs across all frequency bands. IMC was greater in the muscle pairs involved in postural and bipedal stability compared with those involved in muscular force during BpS. Furthermore, beta and gamma IMC magnitudes were highest during eccentric movement periods, whereas we did not find movement-related modulations for alpha IMC magnitudes. This finding thus indicates increased integration of afferent information during eccentric movement periods. Collectively, our results shed light on intermuscular synchronization during bipedal squatting, as we provide evidence that central nervous processing of bilateral intermuscular functioning is achieved through task-dependent modulations of common neural input to homologous muscles. NEW & NOTEWORTHY It is largely unexplored how the central nervous system achieves coordination of homologous muscles of the upper and lower body within a compound whole body movement, and to what extent this neural drive is modulated between different movement periods and muscles. Using intermuscular coherence analysis, we show that homologous muscle functions are mediated through common oscillatory input that extends over alpha, beta, and gamma frequencies with different synchronization patterns at different movement periods.
Collapse
Affiliation(s)
- Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sports Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sports Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Carmen Vidaurre
- Department of Statistics, Informatics and Mathematics, Public University of Navarre, Pamplona, Spain.,Machine Learning Group, Faculty of EE and Computer Science, TU Berlin, Berlin, Germany
| | - Dennis Maudrich
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.,MindBrainBody Institute at Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sports Science, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Vadim V Nikulin
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany.,Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation.,Neurophysics Group, Department of Neurology, Charité-University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|