1
|
Smits RAL, van Raaij BFM, Jansen SWM, van der Bol JM, van der Linden CMJ, Polinder-Bos HA, Willems HC, Steyerberg EW, van Smeden M, Gussekloo J, Mooijaart SP, Trompet S. Validation of the acutely presenting older patient screener for short term mortality prediction in older patients hospitalized for COVID-19. Eur Geriatr Med 2025:10.1007/s41999-025-01200-4. [PMID: 40261576 DOI: 10.1007/s41999-025-01200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE The aim of this study was to validate the acutely presenting older patient (APOP) screener, routinely used on the Emergency Department to predict risk of adverse outcomes in older people, for prediction of in-hospital mortality and 30-days-mortality in older patients hospitalized for COVID-19. METHODS Patients ≥ 70 years from a multicenter cohort hospitalized for COVID-19 with measured APOP risk were included. External validation analysis of the APOP screener for in-hospital mortality and 30-days-mortality was performed including discrimination and calibration. RESULTS 389 patients (median age 80 (IQR 75-85) years, 41.4% female, 138 APOP high risk) were included. APOP high risk patients more often lived institutionalized, (26% vs. 4%; p < 0.001), had more comorbidities (Charlson Comorbidity Index 2 (1-3) vs. 2 (0-3); p = 0.002) and were less often fit (Clinical Frailty Scale 1-3 17% vs. 62%; p < 0.001). 84 patients died in hospital and 114 within 30 days. APOP high risk patients had a higher risk of in-hospital-death [OR 1.6 (95% CI 1.0-2.6)] and death within 30 days [OR 2.7 (95% CI 1.7-4.2)]. The APOP screener discriminated poorly for in-hospital mortality [AUC 0.56 (95% CI 0.48-0.63)] and for 30-days-mortality [AUC 0.62 (95% CI 0.55-0.68)]. Calibration plots revealed overestimation of the screener for both mortality risks. CONCLUSION The APOP screener had a poor predictive performance for in-hospital mortality and 30-days-mortality in older people hospitalized for COVID-19. Screening tools routinely used on the ED may not be useful to predict mortality in different than usual clinical circumstances such as during a pandemic of a novel disease.
Collapse
Affiliation(s)
- Rosalinde A L Smits
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Bas F M van Raaij
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Steffy W M Jansen
- Department of Geriatrics, Catharina Hospital, Eindhoven, The Netherlands
| | | | | | - Harmke A Polinder-Bos
- Division of Geriatrics, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Hanna C Willems
- Section Geriatrics, Department of Internal Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Maarten van Smeden
- Julius Center for Health Sciences and Primary Care, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Jacobijn Gussekloo
- Department of Public Health and Primary Care, LUMC Center for Medicine for Older People, Leiden University Medical Centre, Leiden, The Netherlands
- LUMC Center for Medicine for Older People, Leiden University Medical Centre, Leiden, The Netherlands
| | - Simon P Mooijaart
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
- LUMC Center for Medicine for Older People, Leiden University Medical Centre, Leiden, The Netherlands
| | - Stella Trompet
- Section Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
2
|
European Taskforce on Geriatric Emergency Medicine (ETGEM) collaborators, Coats T, Conroy S, de Groot B, Heeren P, Lim S, Lucke J, Mooijaart S, Nickel CH, Penfold R, Singler K, van Oppen JD, Polyzogopoulou E, Kruis A, McNamara R, de Groot B, Castejon-Hernandez S, Miro O, Karamercan MA, Dündar ZD, van Oppen JD, Pavletić M, Libicherová P, Balen F, Benhamed A, Dubucs X, Hernu R, Laribi S, Singler K, Fraidakis O, Fyntanidou VP, Polyzogopoulou E, Gaal S, Jónsdóttir AB, Kelly-Friel ME, McAteer CA, Sibthorpe LD, Synnott A, Zazzara MB, Coffeng SM, de Groot B, Lucke JA, Smits RAL, Castejon-Hernandez S, Llauger L, Mir SA, Ortiz MS, Padilla EE, Rodeles SC, Rojewski-Rojas W, Fadini D, Jegerlehner NS, Nickel CH, Rezzonico S, Zucconi EC, Cakmak S, Demir HA, Dündar ZD, Güven R, Karamercan MA, Sogut O, Tayfur I, Adams JA, Bernardo J, Brown L, Burton J, Butler MJ, Claassen RI, Compton F, Cooper JG, Heyes R, Ko S, Lightbody CJ, Masoli JAH, McKenzie STG, Mawhinney D, Moultrie NJ, Price A, Raman R, Rothwell LH, Shashikala RP, Smith EJ, Sorice V, van Oppen JD, Wallace JM, Young T, Benvin A, Breški E, Ćefo A, Dumić D, Ferenac R, Jurica I, Otočan M, Zinaić PŠ, Clement B, Jacquin L, Royer B, Apfelbacher SI, Bezati S, Gkarmiri S, et alEuropean Taskforce on Geriatric Emergency Medicine (ETGEM) collaborators, Coats T, Conroy S, de Groot B, Heeren P, Lim S, Lucke J, Mooijaart S, Nickel CH, Penfold R, Singler K, van Oppen JD, Polyzogopoulou E, Kruis A, McNamara R, de Groot B, Castejon-Hernandez S, Miro O, Karamercan MA, Dündar ZD, van Oppen JD, Pavletić M, Libicherová P, Balen F, Benhamed A, Dubucs X, Hernu R, Laribi S, Singler K, Fraidakis O, Fyntanidou VP, Polyzogopoulou E, Gaal S, Jónsdóttir AB, Kelly-Friel ME, McAteer CA, Sibthorpe LD, Synnott A, Zazzara MB, Coffeng SM, de Groot B, Lucke JA, Smits RAL, Castejon-Hernandez S, Llauger L, Mir SA, Ortiz MS, Padilla EE, Rodeles SC, Rojewski-Rojas W, Fadini D, Jegerlehner NS, Nickel CH, Rezzonico S, Zucconi EC, Cakmak S, Demir HA, Dündar ZD, Güven R, Karamercan MA, Sogut O, Tayfur I, Adams JA, Bernardo J, Brown L, Burton J, Butler MJ, Claassen RI, Compton F, Cooper JG, Heyes R, Ko S, Lightbody CJ, Masoli JAH, McKenzie STG, Mawhinney D, Moultrie NJ, Price A, Raman R, Rothwell LH, Shashikala RP, Smith EJ, Sorice V, van Oppen JD, Wallace JM, Young T, Benvin A, Breški E, Ćefo A, Dumić D, Ferenac R, Jurica I, Otočan M, Zinaić PŠ, Clement B, Jacquin L, Royer B, Apfelbacher SI, Bezati S, Gkarmiri S, Kaltsidou CV, Klonos G, Korka Z, Koufogianni A, Mavros V, Nano A, Ntousopoulos A, Papadopoulos N, Sason R, Zagalioti SC, Hjaltadottir I, Sigurþórsdóttir I, Skuladottir SS, Thorsteinsdottir T, Breslin D, Byrne CP, Dolan A, Harte O, Kazi D, McCarthy A, McMillan SS, Moiloa DN, O’Shaughnessy ÍL, Ramiah V, Williams S, Giani T, Levati E, Montenero R, Russo A, Salini S, van den Berg B, Booijen AM, Sir O, Vermeulen AE, ter Voert MA, Alvarez-Galarraga AC, Azeli Y, Gómez RGG, González González R, Lizardo D, Pérez ML, Madan CN, Medina JÁ, Moreno JS, Patiño EVB, Posada DMC, Rodrigo IC, Vitucci CF, Ballinari M, Dreher T, Gianinazzi L, Espejo T, Hautz WE, Rezzonico S, Bayramoğlu B, Cakmak S, Comruk B, Dogan T, Köse F, Allen TP, Ardley R, Beith CM, Boath KA, Britton HL, Campbell MMF, Capel J, Catney C, Clements S, Collins BP, Compton F, Cook A, Cosgriff EJ, Coventry T, Doyle N, Evans Z, Fasina TA, Ferrick JF, Fleming GM, Gallagher C, Golden M, Gorania D, Glass L, Greenlees H, Haddock ZP, Harris R, Hollas C, Hunter A, Ingham C, Ip SSY, James JA, Kenenden C, Jenkinson GE, Lee E, Lovick SA, McFadden M, McGovern R, Medhora J, Merchant F, Mishra S, Moreland GB, Narayanasamy S, Neal AR, Nicholls EL, Omar MT, Osborne N, Oteme FO, Pearson J, Price R, Sajan M, Sandhu LK, Scott-Murfitt H, Sealey B, Sharp EP, Spowage-Delaney BAC, Stephen F, Stevenson L, Tyrrell I, Ukoh CK, Walsh R, Watson AM, Whiteford JEC, Allston-Reeve C, Barson TJ, Giorgi MG, Godhania YL, Inchley V, Mirkes E, Rahman S. Prevalence of Frailty in European Emergency Departments (FEED): an international flash mob study. Eur Geriatr Med 2024; 15:463-470. [PMID: 38340282 PMCID: PMC10997678 DOI: 10.1007/s41999-023-00926-3] [Show More Authors] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Current emergency care systems are not optimized to respond to multiple and complex problems associated with frailty. Services may require reconfiguration to effectively deliver comprehensive frailty care, yet its prevalence and variation are poorly understood. This study primarily determined the prevalence of frailty among older people attending emergency care. METHODS This cross-sectional study used a flash mob approach to collect observational European emergency care data over a 24-h period (04 July 2023). Sites were identified through the European Task Force for Geriatric Emergency Medicine collaboration and social media. Data were collected for all individuals aged 65 + who attended emergency care, and for all adults aged 18 + at a subset of sites. Variables included demographics, Clinical Frailty Scale (CFS), vital signs, and disposition. European and national frailty prevalence was determined with proportions with each CFS level and with dichotomized CFS 5 + (mild or more severe frailty). RESULTS Sixty-two sites in fourteen European countries recruited five thousand seven hundred eighty-five individuals. 40% of 3479 older people had at least mild frailty, with countries ranging from 26 to 51%. They had median age 77 (IQR, 13) years and 53% were female. Across 22 sites observing all adult attenders, older people living with frailty comprised 14%. CONCLUSION 40% of older people using European emergency care had CFS 5 + . Frailty prevalence varied widely among European care systems. These differences likely reflected entrance selection and provide windows of opportunity for system configuration and workforce planning.
Collapse
|
3
|
Morís DI, de Moura J, Marcos PJ, Rey EM, Novo J, Ortega M. Comprehensive analysis of clinical data for COVID-19 outcome estimation with machine learning models. Biomed Signal Process Control 2023; 84:104818. [PMID: 36915863 PMCID: PMC9995330 DOI: 10.1016/j.bspc.2023.104818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/22/2022] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
COVID-19 is a global threat for the healthcare systems due to the rapid spread of the pathogen that causes it. In such situation, the clinicians must take important decisions, in an environment where medical resources can be insufficient. In this task, the computer-aided diagnosis systems can be very useful not only in the task of supporting the clinical decisions but also to perform relevant analyses, allowing them to understand better the disease and the factors that can identify the high risk patients. For those purposes, in this work, we use several machine learning algorithms to estimate the outcome of COVID-19 patients given their clinical information. Particularly, we perform 2 different studies: the first one estimates whether the patient is at low or at high risk of death whereas the second estimates if the patient needs hospitalization or not. The results of the analyses of this work show the most relevant features for each studied scenario, as well as the classification performance of the considered machine learning models. In particular, the XGBoost algorithm is able to estimate the need for hospitalization of a patient with an AUC-ROC of 0 . 8415 ± 0 . 0217 while it can also estimate the risk of death with an AUC-ROC of 0 . 7992 ± 0 . 0104 . Results have demonstrated the great potential of the proposal to determine those patients that need a greater amount of medical resources for being at a higher risk. This provides the healthcare services with a tool to better manage their resources.
Collapse
Affiliation(s)
- Daniel I Morís
- Centro de Investigación CITIC, Universidade da Coruña, Campus de Elviña, s/n, 15071 A Coruña, Spain.,Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Joaquim de Moura
- Centro de Investigación CITIC, Universidade da Coruña, Campus de Elviña, s/n, 15071 A Coruña, Spain.,Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Pedro J Marcos
- Dirección Asistencial y Servicio de Neumología, Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Sergas, 15006 A Coruña, Spain
| | - Enrique Míguez Rey
- Grupo de Investigación en Virología Clínica, Sección de Enfermedades Infecciosas, Servicio de Medicina Interna, Instituto de Investigación Biomédica de A Coruña (INIBIC), Área Sanitaria A Coruña y CEE (ASCC), SERGAS, 15006 A Coruña, Spain
| | - Jorge Novo
- Centro de Investigación CITIC, Universidade da Coruña, Campus de Elviña, s/n, 15071 A Coruña, Spain.,Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Marcos Ortega
- Centro de Investigación CITIC, Universidade da Coruña, Campus de Elviña, s/n, 15071 A Coruña, Spain.,Grupo VARPA, Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| |
Collapse
|