1
|
Ziogou A, Giannakodimos A, Giannakodimos I, Tsantes AG, Ioannou P. Pandoraea Infections in Humans-A Systematic Review. J Clin Med 2024; 13:6905. [PMID: 39598047 PMCID: PMC11594697 DOI: 10.3390/jcm13226905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives:Pandoraea species are Gram-negative, aerobic, rod-shaped bacteria that belong to the Burkholderiaceae family and the Betaproteobacteria class. Despite their rare occurrence in the general population, they have been increasingly observed as the causes of infection in immunocompromised individuals or patients with severe comorbidities. The present review seeks to examine all documented cases of Pandoraea spp. infections in humans, focusing on data related to epidemiology, microbiology, antimicrobial susceptibility, treatment options, and mortality rates. Methods: A systematic review was conducted through a literature search of the PubMed/MedLine and Scopus databases. This review is subjected to certain limitations regarding the data accuracy or pathogen identification molecular techniques applied in the studies. Results: In total, 29 studies provided information on 43 patients with Pandoraea spp. infections. The mean age of the patients was 42 years, and 58% were male. Cystic fibrosis was these patients' most prevalent risk factor (39.5%). The most frequently reported types of infection were lower respiratory tract infections (74.41%) and bacteremia (30.23%), followed by infective endocarditis, pancreatitis, upper respiratory tract infection, and osteomyelitis (4.65%). P. apista was the most regularly isolated species (37.2%), while antimicrobial resistance was lower for carbapenems, especially for imipenem (17.14%). The most commonly administered antibiotics included carbapenems (82%), cephalosporins, and trimethoprim/sulfamethoxazole (35.89%). The infection outcome primarily depended on the type of infection; mortality rates were high (30.23%) and particularly elevated for bloodstream infections. The protocol for this review was registered in Prospero (ID: CRD42024579385). Conclusions: Due to Pandoraea's unique antimicrobial resistance pattern and capacity to induce severe infection, clinicians should include it when making a differential diagnosis, especially in patients with severe comorbidities and immunodeficiency.
Collapse
Affiliation(s)
- Afroditi Ziogou
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, 18537 Piraeus, Greece
| | - Alexios Giannakodimos
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, 18537 Piraeus, Greece
| | - Ilias Giannakodimos
- Department of Urology, Attikon University General Hospital of Athens, 12462 Athens, Greece
| | - Andreas G. Tsantes
- Laboratory of Hematology and Blood Bank Unit, School of Medicine, Attikon University General Hospital of Athens, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
2
|
Yi MH, Choi JH, Kim M, Chavarria X, Yun S, Oh S, Kang D, Yong TS, Kim JY. Microbiome of lovebug ( Plecia longiforceps) in Seoul, South Korea. Microbiol Spectr 2024; 12:e0380923. [PMID: 38809007 PMCID: PMC11218492 DOI: 10.1128/spectrum.03809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Lovebugs appeared in large numbers across a wide area in Seoul, South Korea, in June 2023. The sudden appearance of exotic insects not only discomforts people but also fosters anxiety, as their potential for pathogen transmission would be unknown. In this study, targeted next-generation sequencing (NGS) of the 16S rRNA gene V4 region was performed using iSeq 100 to screen for bacteria in lovebugs. Forty-one lovebugs (20 females and 21 males) collected in Seoul, Korea, were identified as Plecia longiforceps based on mitochondrial cytochrome oxidase subunit 1 sequencing data using PCR. We analyzed the microbiome of the lovebugs and detected 453 species of bacteria. Among all bacteria screened based on NGS, Rickettsia was detected in all samples with an average relative abundance of 80.40%, followed by Pandoraea and Ewingella. Diversity (alpha and beta) between females and males did not differ; however, only Tumebacillus showed a higher relative abundance in females. Sequencing analysis of Rickettsia using a gltA gene-specific primer by PCR showed that it had higher sequence similarity to the Rickettsia symbiont of arthropods than to the spotted fever group rickettsiae. Eleven samples in which Pandoraea was detected by iSeq 100 were confirmed by PCR and exhibited 100% sequence identity to Pandoraea oxalativorans strain DSM 23570. Consequently, the likelihood of pathogen transmission to humans is low. The applied method may play a crucial role in swiftly identifying bacterial species in the event of future outbreaks of exotic insects that may be harmful to humans.IMPORTANCELovebugs have recently emerged in large numbers in Seoul, causing major concern regarding potential health risks. By performing the next-generation sequencing of the 16S rRNA gene V4 region, we comprehensively examined the microbiome of these insects. We identified the presence of numerous bacteria, including Rickettsia and Pandoraea. Reassuringly, subsequent tests confirmed that these detected bacteria were not pathogenic. The present study addresses health concerns related to lovebugs and shows the accuracy and efficiency of our detection technique. Such methods prove invaluable for rapidly identifying bacterial species during potential outbreaks of unfamiliar insects, thereby ensuring public safety.
Collapse
Affiliation(s)
- Myung-Hee Yi
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun Ho Choi
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, South Korea
| | - Myungjun Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, South Korea
| | - Xavier Chavarria
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, South Korea
| | - Sohyeon Yun
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, South Korea
| | - Singeun Oh
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongjun Kang
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, South Korea
| | - Tai-Soon Yong
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Schwarz C, Bend J, Hebestreit H, Hogardt M, Hügel C, Illing S, Mainz JG, Rietschel E, Schmidt S, Schulte-Hubbert B, Sitter H, Wielpütz MO, Hammermann J, Baumann I, Brunsmann F, Dieninghoff D, Eber E, Ellemunter H, Eschenhagen P, Evers C, Gruber S, Koitschev A, Ley-Zaporozhan J, Düesberg U, Mentzel HJ, Nüßlein T, Ringshausen FC, Sedlacek L, Smaczny C, Sommerburg O, Sutharsan S, Vonberg RP, Weber AK, Zerlik J. [CF Lung Disease - a German S3 Guideline: Pseudomonas aeruginosa]. Pneumologie 2024; 78:367-399. [PMID: 38350639 DOI: 10.1055/a-2182-1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Cystic Fibrosis (CF) is the most common autosomal recessive genetic multisystemic disease. In Germany, it affects at least 8000 people. The disease is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene leading to dysfunction of CFTR, a transmembrane chloride channel. This defect causes insufficient hydration of the airway epithelial lining fluid which leads to reduction of the mucociliary clearance.Even if highly effective, CFTR modulator therapy has been available for some years and people with CF are getting much older than before, recurrent and chronic infections of the airways as well as pulmonary exacerbations still occur. In adult CF life, Pseudomonas aeruginosa (PA) is the most relevant pathogen in colonisation and chronic infection of the lung, leading to further loss of lung function. There are many possibilities to treat PA-infection.This is a S3-clinical guideline which implements a definition for chronic PA-infection and demonstrates evidence-based diagnostic methods and medical treatment in order to give guidance for individual treatment options.
Collapse
Affiliation(s)
- Carsten Schwarz
- Klinikum Westbrandenburg GmbH, Standort Potsdam, Deutschland
| | - Jutta Bend
- Mukoviszidose Institut gGmbH, Bonn, Deutschland
| | | | - Michael Hogardt
- Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Frankfurt, Deutschland
| | - Christian Hügel
- Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Deutschland
| | | | - Jochen G Mainz
- Klinikum Westbrandenburg, Standort Brandenburg an der Havel, Universitätsklinikum der Medizinischen Hochschule Brandenburg (MHB), Brandenburg an der Havel, Deutschland
| | - Ernst Rietschel
- Medizinische Fakultät der Universität zu Köln, Mukoviszidose-Zentrum, Klinik und Poliklinik für Kinder- und Jugendmedizin, Köln, Deutschland
| | - Sebastian Schmidt
- Ernst-Moritz-Arndt Universität Greifswald, Kinderpoliklinik, Allgemeine Pädiatrie, Greifswald, Deutschland
| | | | - Helmut Sitter
- Philipps-Universität Marburg, Institut für theoretische Medizin, Marburg, Deutschland
| | - Marc Oliver Wielpütz
- Universitätsklinikum Heidelberg, Klinik für Diagnostische und Interventionelle Radiologie, Heidelberg, Deutschland
| | - Jutta Hammermann
- Universitäts-Mukoviszidose-Zentrum "Christiane Herzog", Dresden, Deutschland
| | - Ingo Baumann
- Universität Heidelberg, Hals-Nasen-Ohrenklinik, Heidelberg, Deutschland
| | - Frank Brunsmann
- Allianz Chronischer Seltener Erkrankungen (ACHSE) e. V., Deutschland (Patient*innenvertreter)
| | | | - Ernst Eber
- Medizinische Universität Graz, Univ. Klinik für Kinder- und Jugendheilkunde, Klinische Abteilung für Pädiatrische Pulmonologie und Allergologie, Graz, Österreich
| | - Helmut Ellemunter
- Tirolkliniken GmbH, Department für Kinderheilkunde, Pädiatrie III, Innsbruck, Österreich
| | | | | | - Saskia Gruber
- Medizinische Universität Wien, Universitätsklinik für Kinder- und Jugendheilkunde, Wien, Österreich
| | - Assen Koitschev
- Klinikum Stuttgart - Standort Olgahospital, Klinik für Hals-Nasen-Ohrenkrankheiten, Stuttgart, Deutschland
| | - Julia Ley-Zaporozhan
- Klinik und Poliklinik für Radiologie, Kinderradiologie, LMU München, Deutschland
| | | | - Hans-Joachim Mentzel
- Universitätsklinikum Jena, Sektion Kinderradiologie, Institut für Diagnostische und Interventionelle Radiologie, Jena, Deutschland
| | - Thomas Nüßlein
- Gemeinschaftsklinikum Mittelrhein, Klinik für Kinder- und Jugendmedizin Koblenz und Mayen, Koblenz, Deutschland
| | - Felix C Ringshausen
- Medizinische Hochschule Hannover, Klinik für Pneumologie und Infektiologie und Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
| | - Ludwig Sedlacek
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Hannover, Deutschland
| | - Christina Smaczny
- Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Deutschland
| | - Olaf Sommerburg
- Universitätsklinikum Heidelberg, Sektion Pädiatrische Pneumologie, Allergologie und Mukoviszidose-Zentrum, Heidelberg, Deutschland
| | | | - Ralf-Peter Vonberg
- Medizinische Hochschule Hannover, Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Hannover, Deutschland
| | | | - Jovita Zerlik
- Altonaer Kinderkrankenhaus gGmbH, Abteilung Physiotherapie, Hamburg, Deutschland
| |
Collapse
|
4
|
Kruis T, Menzel P, Schwarzer R, Wiesener S, Schoenrath F, Klefisch F, Stegemann M, Pfäfflin F. Outbreak of Pandoraea commovens Infections among Non-Cystic Fibrosis Intensive Care Patients, Germany, 2019-2021. Emerg Infect Dis 2023; 29:2229-2237. [PMID: 37877517 PMCID: PMC10617358 DOI: 10.3201/eid2911.230493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Pandoraea spp. are gram-negative, nonfermenting rods mainly known to infect patients with cystic fibrosis (CF). Outbreaks have been reported from several CF centers. We report a Pandoraea spp. outbreak comprising 24 non-CF patients at a large university hospital and a neighboring heart center in Germany during July 2019-December 2021. Common features in the patients were critical illness, invasive ventilation, antimicrobial pretreatment, and preceding surgery. Complicated and relapsing clinical courses were observed in cases with intraabdominal infections but not those with lower respiratory tract infections. Genomic analysis of 15 isolates identified Pandoraea commovens as the genetically most similar species and confirmed the clonality of the outbreak strain, designated P. commovens strain LB-19-202-79. The strain exhibited resistance to most antimicrobial drugs except ampicillin/sulbactam, imipenem, and trimethoprim/sulfamethoxazole. Our findings suggest Pandoraea spp. can spread among non-CF patients and underscore that clinicians and microbiologists should be vigilant in detecting and assessing unusual pathogens.
Collapse
|
5
|
Kim ME, Goldstein SL, Chlebowski MM. Recombinant angiotensin II therapy in a child with cardiac dysfunction and Pandoraea and Candida sepsis. Cardiol Young 2023; 33:2393-2394. [PMID: 37212085 DOI: 10.1017/s1047951123001221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recombinant angiotensin II is an emerging drug therapy for refractory hypotension. Its use is relevant to patients with disruption of the renin-angiotensin-aldosterone system denoted by elevated direct renin levels. We present a child that responded to recombinant angiotensin II in the setting of right ventricular hypertension and multi-organism septic shock.
Collapse
Affiliation(s)
- Michael E Kim
- Heart Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Stuart L Goldstein
- Department of Pediatrics, Division of Nephrology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Meghan M Chlebowski
- Heart Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
6
|
Farfour E, Roux A, Sage E, Revillet H, Vasse M, Vallée A. Rarely Encountered Gram-Negative Rods and Lung Transplant Recipients: A Narrative Review. Microorganisms 2023; 11:1468. [PMID: 37374970 DOI: 10.3390/microorganisms11061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The respiratory tract of lung transplant recipients (LTR) is likely to be colonized with non-fermentative Gram-negative rods. As a consequence of the improvements in molecular sequencing and taxonomy, an increasing number of bacterial species have been described. We performed a review of the literature of bacterial infections in LTR involving non-fermentative Gram-negative rods with exclusion of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp. and Burkholderia spp. Overall, non-fermenting GNR were recovered from 17 LTR involving the following genera: Acetobacter, Bordetella, Chryseobacterium, Elizabethkinga, Inquilinus, and Pandoraea. We then discuss the issues raised by these bacteria, including detection and identification, antimicrobial resistance, pathogenesis, and cross-transmission.
Collapse
Affiliation(s)
- Eric Farfour
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France
| | - Antoine Roux
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, 92150 Suresnes, France
| | - Edouard Sage
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, 92150 Suresnes, France
| | - Hélène Revillet
- Service de Bactériologie-Hygiène Hospitalière, CHU de Toulouse, 31300 Toulouse, France
- Observatoire National Burkholderia cepacia, 31403 Toulouse, France
| | - Marc Vasse
- Service de Biologie Clinique, Hôpital Foch, 92150 Suresnes, France
- INSERM Hémostase Inflammation Thrombose HITH U1176, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Alexandre Vallée
- Service d'Epidémiologie-Data-Biostatistiques, Délégation à la Recherche Clinique et à l'Innovation, Hôpital Foch, 92150 Suresnes, France
| |
Collapse
|
7
|
Ma Z, Zou X, Lin J, Zhang C, Xiao S. Sepsis Due to Pandoraea sputorum Infection After Multiple Trauma in a Non-Cystic Fibrosis Patient: A Case Report from Southeast China. Infect Drug Resist 2022; Volume 15:7043-7052. [DOI: 10.2147/idr.s388520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
|
8
|
Jones AM. Infection control in cystic fibrosis: evolving perspectives and challenges. Curr Opin Pulm Med 2022; 28:571-576. [PMID: 36101908 DOI: 10.1097/mcp.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews the impact of some of the most recent changes in clinical care management in cystic fibrosis on infection prevention practice and advice for people with cystic fibrosis. RECENT FINDINGS People with cystic fibrosis (CF) consistently highlight infection control as one of their major concerns. Infection prevention guidance and practice has facilitated successful decreases in rates of many transmissible CF pathogens. The coronavirus disease 2019 pandemic highlighted the clinical significance of respiratory viral infections and has accelerated the implementation of remote monitoring and telemedicine consultations as standard practice in CF. The continued improvement in health of the CF population is being further augmented by the introduction of new therapies, in particular cystic fibrosis transmembrane conductance regulator modulators. Infection prevention will remain pertinent to CF care, but these recent changes in clinical practice will have ongoing implications for infection prevention guidance in CF. SUMMARY Recent changes in CF clinical care have implications that will lead to further evolution of infection control practice and advice.
Collapse
|
9
|
Green HD, Jones AM. Managing Pulmonary Infection in Adults With Cystic Fibrosis: Adult Cystic Fibrosis Series. Chest 2022; 162:66-75. [PMID: 35167860 DOI: 10.1016/j.chest.2022.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic airway infection and progressive respiratory decline. Historically, a narrow spectrum of bacterial pathogens was believed to comprise the bulk of respiratory infections in CF, with Haemophilus influenzae and Staphylococcus aureus dominating childhood infections, and Pseudomonas aeruginosa or, less commonly, a member of the Burkholderia cepacia complex becoming the dominant infecting organism in adulthood. Today, the landscape is changing for airway infection in CF. The prevalence of "less typical" gram-negative bacterial infections are rising due to a number of factors: the CF population is aging; new therapies are being introduced; antibiotic usage is increasing; diagnostic tests are evolving; and taxonomic changes are being made as new bacterial species are being discovered. Less is known about the clinical relevance and evidence for treatment strategies for many of the other lower prevalence organisms that are encountered in CF. The aim of this article was to discuss the current evidence and recommended strategies for treating airway infection in CF, focusing on bacterial infections.
Collapse
Affiliation(s)
- Heather D Green
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, England
| | - Andrew M Jones
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, England; Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, England.
| |
Collapse
|
10
|
Zhao L, Cho WC, Luo JL. Exploring the patient-microbiome interaction patterns for pan-cancer. Comput Struct Biotechnol J 2022; 20:3068-3079. [PMID: 35782745 PMCID: PMC9233187 DOI: 10.1016/j.csbj.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022] Open
Abstract
Microbes play important roles in human health and disease. Immunocompromised cancer patients are more vulnerable to getting microbial infections. Regions of hypoxia and acidic tumor microenvironment shape the microbial community diversity and abundance. Each cancer has its own microbiome, making cancer-specific sets of microbiomes. High-throughput profiling technologies provide a culture-free approach for microbial profiling in tumor samples. Microbial compositional data was extracted and examined from the TCGA unmapped transcriptome data. Biclustering, correlation, and statistical analyses were performed to determine the seven patient-microbe interaction patterns. These two-dimensional patterns consist of a group of microbial species that show significant over-representation over the 7 pan-cancer subtypes (S1-S7), respectively. Approximately 60% of the untreated cancer patients have experienced tissue microbial composition and functional changes between subtypes and normal controls. Among these changes, subtype S5 had loss of microbial diversity as well as impaired immune functions. S1, S2, and S3 had been enriched with microbial signatures derived from the Gammaproteobacteria, Actinobacteria and Betaproteobacteria, respectively. Colorectal cancer (CRC) was largely composed of two subtypes, namely S4 and S6, driven by different microbial profiles. S4 patients had increased microbial load, and were enriched with CRC-related oncogenic pathways. S6 CRC together with other cancer patients, making up almost 40% of all cases were classified into the S6 subtype, which not only resembled the normal control's microbiota but also retained their original "normal-like" functions. Lastly, the S7 was a rare and understudied subtype. Our study investigated the pan-cancer heterogeneity at the microbial level. The identified seven pan-cancer subtypes with 424 subtype-specific microbial signatures will help us find new therapeutic targets and better treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - William C.S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Jun-Li Luo
- The Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| |
Collapse
|
11
|
Berglund F, Böhm ME, Martinsson A, Ebmeyer S, Österlund T, Johnning A, Larsson DGJ, Kristiansson E. Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microb Genom 2020; 6:mgen000455. [PMID: 33125315 PMCID: PMC7725328 DOI: 10.1099/mgen.0.000455] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
Tetracyclines are broad-spectrum antibiotics used to prevent or treat a variety of bacterial infections. Resistance is often mediated through mobile resistance genes, which encode one of the three main mechanisms: active efflux, ribosomal target protection or enzymatic degradation. In the last few decades, a large number of new tetracycline-resistance genes have been discovered in clinical settings. These genes are hypothesized to originate from environmental and commensal bacteria, but the diversity of tetracycline-resistance determinants that have not yet been mobilized into pathogens is unknown. In this study, we aimed to characterize the potential tetracycline resistome by screening genomic and metagenomic data for novel resistance genes. By using probabilistic models, we predicted 1254 unique putative tetracycline resistance genes, representing 195 gene families (<70 % amino acid sequence identity), whereof 164 families had not been described previously. Out of 17 predicted genes selected for experimental verification, 7 induced a resistance phenotype in an Escherichia coli host. Several of the predicted genes were located on mobile genetic elements or in regions that indicated mobility, suggesting that they easily can be shared between bacteria. Furthermore, phylogenetic analysis indicated several events of horizontal gene transfer between bacterial phyla. Our results also suggested that acquired efflux pumps originate from proteobacterial species, while ribosomal protection genes have been mobilized from Firmicutes and Actinobacteria. This study significantly expands the knowledge of known and putatively novel tetracycline resistance genes, their mobility and evolutionary history. The study also provides insights into the unknown resistome and genes that may be encountered in clinical settings in the future.
Collapse
Affiliation(s)
- Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Maria-Elisabeth Böhm
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anton Martinsson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Stefan Ebmeyer
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Anna Johnning
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Chalmers Science Park, Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Boutin CA, Cornut G, Bilik Pinto V, Grandjean Lapierre S. Pandoraea sp infection in a lung transplant patient and the critical role of MALDI-TOF in accurate bacterial identification. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2020; 5:177-181. [PMID: 36341313 PMCID: PMC9608733 DOI: 10.3138/jammi-2020-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/03/2020] [Indexed: 06/16/2023]
Abstract
Diagnosis and clinical management of pulmonary infections in lung transplant patients are challenging. The increased diversity of bacterial species identified from clinical samples with novel proteomics-based systems can further complicate clinical decision making in this highly vulnerable population. Whether newly recognized organisms are colonizers or true pathogens often remains controversial since symptoms causality and impact on lung function is often unknown. We present the case of a 48-year-old female lung transplant patient with Pandoraea sp infection. We review and discuss the role of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for accurate bacterial identification. We report on therapeutic management and clinical outcome.
Collapse
Affiliation(s)
| | - Gilbert Cornut
- Université de Montréal, Montréal, Quebec, Canada
- Fleury Hospital, Montréal, Quebec, Canada
| | | | - Simon Grandjean Lapierre
- Université de Montréal, Montréal, Quebec, Canada
- Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
13
|
Prokop JW, Shankar R, Gupta R, Leimanis ML, Nedveck D, Uhl K, Chen B, Hartog NL, Van Veen J, Sisco JS, Sirpilla O, Lydic T, Boville B, Hernandez A, Braunreiter C, Kuk CC, Singh V, Mills J, Wegener M, Adams M, Rhodes M, Bachmann AS, Pan W, Byrne-Steele ML, Smith DC, Depinet M, Brown BE, Eisenhower M, Han J, Haw M, Madura C, Sanfilippo DJ, Seaver LH, Bupp C, Rajasekaran S. Virus-induced genetics revealed by multidimensional precision medicine transcriptional workflow applicable to COVID-19. Physiol Genomics 2020; 52:255-268. [PMID: 32437232 PMCID: PMC7303726 DOI: 10.1152/physiolgenomics.00045.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Precision medicine requires the translation of basic biological understanding to medical insights, mainly applied to characterization of each unique patient. In many clinical settings, this requires tools that can be broadly used to identify pathology and risks. Patients often present to the intensive care unit with broad phenotypes, including multiple organ dysfunction syndrome (MODS) resulting from infection, trauma, or other disease processes. Etiology and outcomes are unique to individuals, making it difficult to cohort patients with MODS, but presenting a prime target for testing/developing tools for precision medicine. Using multitime point whole blood (cellular/acellular) total transcriptomics in 27 patients, we highlight the promise of simultaneously mapping viral/bacterial load, cell composition, tissue damage biomarkers, balance between syndromic biology versus environmental response, and unique biological insights in each patient using a single platform measurement. Integration of a transcriptome workflow yielded unexpected insights into the complex interplay between host genetics and viral/bacterial specific mechanisms, highlighted by a unique case of virally induced genetics (VIG) within one of these 27 patients. The power of RNA-Seq to study unique patient biology while investigating environmental contributions can be a critical tool moving forward for translational sciences applied to precision medicine.
Collapse
Affiliation(s)
- Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Rama Shankar
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Ruchir Gupta
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Mara L Leimanis
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Derek Nedveck
- Office of Research, Spectrum Health, Grand Rapids, Michigan
| | - Katie Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Bin Chen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Nicholas L Hartog
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Pediatric Allergy and Immunology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
- Adult Allergy and Immunology, Spectrum Health, Grand Rapids, Michigan
| | - Jason Van Veen
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Grand Rapids Community College, Grand Rapids, Michigan
| | - Joshua S Sisco
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Grand Rapids Community College, Grand Rapids, Michigan
| | - Olivia Sirpilla
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Walsh University, North Canton, Ohio
| | - Todd Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Brian Boville
- Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Angel Hernandez
- Pediatric Neurology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Chi Braunreiter
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Pediatric Hematology-Oncology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - ChiuYing Cynthia Kuk
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Varinder Singh
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Joshua Mills
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Grand Rapids Community College, Grand Rapids, Michigan
| | - Marc Wegener
- Genomics Core Facility, Van Andel Institute, Grand Rapids, Michigan
| | - Marie Adams
- Genomics Core Facility, Van Andel Institute, Grand Rapids, Michigan
| | - Mary Rhodes
- Genomics Core Facility, Van Andel Institute, Grand Rapids, Michigan
| | - Andre S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | | | | | | | | | | | | | - Jian Han
- iRepertoire Inc., Huntsville, Alabama
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Marcus Haw
- Congenital Heart Center, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Casey Madura
- Pediatric Neurology, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Dominic J Sanfilippo
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Laurie H Seaver
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Spectrum Health Medical Genetics, Grand Rapids, Michigan
| | - Caleb Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Spectrum Health Medical Genetics, Grand Rapids, Michigan
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
- Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan
- Office of Research, Spectrum Health, Grand Rapids, Michigan
| |
Collapse
|
14
|
Coward A, Kenna DTD, Woodford N, Turton JF. Structured surveillance of Achromobacter, Pandoraea and Ralstonia species from patients in England with cystic fibrosis. J Cyst Fibros 2019; 19:388-393. [PMID: 31862307 DOI: 10.1016/j.jcf.2019.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022]
Abstract
A structured survey of the cystic fibrosis pathogens Achromobacter, Pandoraea and Ralstonia species from thirteen sentinel hospitals throughout England was undertaken by Public Health England. One isolate per patient of these genera collected from CF patients during the seven-month survey period in 2015 was requested from participating hospitals. Species-level identification was performed using nrdA/gyrB sequence cluster analysis, and genotyping by pulsed-field gel electrophoresis. In total, 176 isolates were included in the survey; 138 Achromobacter spp. (78.4%), 29 Pandoraea spp. (16.5%) and 9 Ralstonia spp. (5.1%). Novel Achromobacter and Pandoraea clusters were identified. High levels of antimicrobial resistance were found, particularly among Pandoraea isolates. Genotyping analysis revealed considerable diversity, however one geographically-widespread cluster of A. xylosoxidans isolates from six hospitals was found, in addition to two other clusters, both comprising isolates from two hospitals, either derived from the same region (A. xylosoxidans), or from hospitals within the same city (P. apista).
Collapse
Affiliation(s)
- Amy Coward
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Dervla T D Kenna
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom..
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Jane F Turton
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
15
|
Xia J, Sun H, Zhang XX, Zhang T, Ren H, Ye L. Aromatic compounds lead to increased abundance of antibiotic resistance genes in wastewater treatment bioreactors. WATER RESEARCH 2019; 166:115073. [PMID: 31542545 DOI: 10.1016/j.watres.2019.115073] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/29/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Various aromatic compounds in wastewater, especially industrial wastewater, are treated by biological processes in bioreactors which are regarded as hotspots and reservoirs of antibiotic resistance genes (ARGs). Yet, little is known about the relationship between the aromatic compound degradation process and antibiotic resistance. Here, we report on the co-occurrence of ARGs and aromatic degradation genes (ADGs) in bacteria in bioreactors. We confirmed this by bioreactor experiments and bioinformatics analysis of over 10,000 publicly available bacterial genomes. We observed a significant enrichment of ARGs in bioreactors treating wastewater that contained p-aminophenol and p-nitrophenol. The potential hosts harboring ARGs and ADGs were mainly Pseudomonas, Leucobacter, Xanthobacter, Acinetobacter, and Burkholderiaceae. Genome analysis revealed that 67.6% of the publicly available bacterial genomes harboring ADGs also harbor ARGs. Over 80% of Burkholderiales, Xanthomonales, Enterobacteriaceae, Acinetobacter, Pseudomonas, and Nocardiaceae genomes harbor both ARGs and ADGs, which strongly suggests the co-occurrence of these genes. Furthermore, bacteria carrying ADGs harbored more than twice the number of ARGs than bacteria only carrying ARGs. Network analysis suggested that multidrug, beta-lactam, aminoglycoside, macrolide-lincosamide-streptogramin, and polymyxin resistance genes are the major ARGs associated with ADGs. Taken together, the presented findings improve the understanding of ARG prevalence in biological wastewater treatment plants, and highlight the potential risk of the effect of regular aromatic compounds on the selection and spread of ARGs.
Collapse
Affiliation(s)
- Juntao Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China; School of Public Health, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
16
|
Peeters C, De Canck E, Cnockaert M, De Brandt E, Snauwaert C, Verheyde B, Depoorter E, Spilker T, LiPuma JJ, Vandamme P. Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism. Front Microbiol 2019; 10:2556. [PMID: 31781066 PMCID: PMC6851202 DOI: 10.3389/fmicb.2019.02556] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/23/2019] [Indexed: 01/31/2023] Open
Abstract
Comparative analysis of partial gyrB, recA, and gltB gene sequences of 84 Pandoraea reference strains and field isolates revealed several clusters that included no taxonomic reference strains. The gyrB, recA, and gltB phylogenetic trees were used to select 27 strains for whole-genome sequence analysis and for a comparative genomics study that also included 41 publicly available Pandoraea genome sequences. The phylogenomic analyses included a Genome BLAST Distance Phylogeny approach to calculate pairwise digital DNA–DNA hybridization values and their confidence intervals, average nucleotide identity analyses using the OrthoANIu algorithm, and a whole-genome phylogeny reconstruction based on 107 single-copy core genes using bcgTree. These analyses, along with subsequent chemotaxonomic and traditional phenotypic analyses, revealed the presence of 17 novel Pandoraea species among the strains analyzed, and allowed the identification of several unclassified Pandoraea strains reported in the literature. The genus Pandoraea has an open pan genome that includes many orthogroups in the ‘Xenobiotics biodegradation and metabolism’ KEGG pathway, which likely explains the enrichment of these species in polluted soils and participation in the biodegradation of complex organic substances. We propose to formally classify the 17 novel Pandoraea species as P. anapnoica sp. nov. (type strain LMG 31117T = CCUG 73385T), P. anhela sp. nov. (type strain LMG 31108T = CCUG 73386T), P. aquatica sp. nov. (type strain LMG 31011T = CCUG 73384T), P. bronchicola sp. nov. (type strain LMG 20603T = ATCC BAA-110T), P. capi sp. nov. (type strain LMG 20602T = ATCC BAA-109T), P. captiosa sp. nov. (type strain LMG 31118T = CCUG 73387T), P. cepalis sp. nov. (type strain LMG 31106T = CCUG 39680T), P. commovens sp. nov. (type strain LMG 31010T = CCUG 73378T), P. communis sp. nov. (type strain LMG 31110T = CCUG 73383T), P. eparura sp. nov. (type strain LMG 31012T = CCUG 73380T), P. horticolens sp. nov. (type strain LMG 31112T = CCUG 73379T), P. iniqua sp. nov. (type strain LMG 31009T = CCUG 73377T), P. morbifera sp. nov. (type strain LMG 31116T = CCUG 73389T), P. nosoerga sp. nov. (type strain LMG 31109T = CCUG 73390T), P. pneumonica sp. nov. (type strain LMG 31114T = CCUG 73388T), P. soli sp. nov. (type strain LMG 31014T = CCUG 73382T), and P. terrigena sp. nov. (type strain LMG 31013T = CCUG 73381T).
Collapse
Affiliation(s)
- Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evelien De Canck
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evie De Brandt
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Cindy Snauwaert
- BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Bart Verheyde
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Eliza Depoorter
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Theodore Spilker
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.,BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
17
|
Xiao X, Tian H, Cheng X, Li G, Zhou J, Peng Z, Li Y. Pandoraea sputorum Bacteremia In A Patient Who Had Undergone Allogeneic Liver Transplantation Plus Immunosuppressive Therapy: A Case Report. Infect Drug Resist 2019; 12:3359-3364. [PMID: 31695454 PMCID: PMC6821047 DOI: 10.2147/idr.s227643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/12/2019] [Indexed: 01/01/2023] Open
Abstract
Pandoraea sputorum (P. sputorum), an emerging pathogen, is able to trigger a pronounced pro-inflammatory response that results in lung dysfunction in cystic fibrosis (CF) patients. All previous P. sputorum isolates have been obtained from the respiratory samples of CF patients, with no reported cases of P. sputorum bacteremia. For the first time, we report P. sputorum isolates recovered twice from the blood cultures of a patient with liver cancer who had undergone allogeneic liver transplantation. These isolates were successfully identified by combining mass spectrometry and molecular techniques based on 16S rRNA sequencing methods. At the onset of the P. sputorum bacteremia, the patient's peripheral T, B and NK cell counts were 181.68/μL, 59.57/μL and 70.66/μL, respectively. The serum procalcitonin level, C-reactive protein level and peripheral neutrophil granulocyte percentage were 0.56 ng/mL, 61.00 mg/L and 96.8%, respectively. We found these isolates to be susceptible to ciprofloxacin and piperacillin/tazobactam and to be intermediate to amikacin. Previous studies have found P. sputorum isolates to be resistant. All of the data combined showed that compromised immune function from allogeneic liver transplantation plus immunosuppressive therapy contributes to the occurrence of P. sputorum bacteremia. Furthermore, the P. sputorum isolates demonstrated characteristic resistance profiles.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Hongpan Tian
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Xiaohuan Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Guoming Li
- Health Inspection and Testing Institute, Hubei Provincial Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Junying Zhou
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
18
|
Lin C, Luo N, Xu Q, Zhang J, Cai M, Zheng G, Yang P. Pneumonia due to Pandoraea Apista after evacuation of traumatic intracranial hematomas:a case report and literature review. BMC Infect Dis 2019; 19:869. [PMID: 31640582 PMCID: PMC6805617 DOI: 10.1186/s12879-019-4420-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/28/2019] [Indexed: 11/21/2022] Open
Abstract
Background Pandoraea species is a newly described genus, which is multidrug resistant and difficult to identify. Clinical isolates are mostly cultured from cystic fibrosis (CF) patients. CF is a rare disease in China, which makes Pandoraea a total stranger to Chinese physicians. Pandoraea genus is reported as an emerging pathogen in CF patients in most cases. However, there are few pieces of evidence that confirm Pandoraea can be more virulent in non-CF patients. The pathogenicity of Pandoraea genus is poorly understood, as well as its treatment. The incidence of Pandoraea induced infection in non-CF patients may be underestimated and it’s important to identify and understand these organisms. Case presentation We report a 44-years-old man who suffered from pneumonia and died eventually. Before his condition deteriorated, a Gram-negative bacilli was cultured from his sputum and identified as Pandoraea Apista by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS). Conclusion Pandoraea spp. is an emerging opportunistic pathogen. The incidences of Pandoraea related infection in non-CF patients may be underestimated due to the difficulty of identification. All strains of Pandoraea show multi-drug resistance and highly variable susceptibility. To better treatment, species-level identification and antibiotic susceptibility test are necessary.
Collapse
Affiliation(s)
- Chuanzhong Lin
- Department of Pharmacy, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China.,Department of Pharmacy, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Ning Luo
- Department of Pharmacy, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Qiang Xu
- Department of Pharmacy, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China
| | - Jianjun Zhang
- Department of Pharmacy, Zhejiang provincial hospital of TCM, Hangzhou, China
| | - Mengting Cai
- Department of Pharmacy, Meizhou People's Hospital, Meizhou, China
| | - Guanhao Zheng
- Department of Pharmacy, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Ping Yang
- Department of Pharmacy, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Tabatabaei M, Dastbarsar M, Moslehi MA. Isolation and identification of Pandoraea spp. From bronchoalveolar lavage of cystic fibrosis patients in Iran. Ital J Pediatr 2019; 45:118. [PMID: 31477148 PMCID: PMC6720371 DOI: 10.1186/s13052-019-0687-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
Background Pandoraea species are gram negative, motile, non-spore forming, rod shaped and oxidase positive, obligate aerobes bacteria, and have one polar flagellum. Most of Pandoraea species are associated with lung infections in cystic fibrosis patients. Cystic fibrosis is the most prevalent autosomal recessive hereditary disease in the world that affects various organs of the body. The main important cause of death in these patients is lung involvement. This study was conducted to isolate and identify Pandoraea bacterium from bronchoalveolar lavage and sputum samples of cystic fibrosis patients in Shiraz, Iran. Methods In this research 31 samples of bronchoalveolar lavage and sputum were examined by culture and PCR method. Then confirmed isolates were evaluated for susceptibility to different antibiotics and ability to produce biofilm. Results The results of this study after cultivation, purification and DNA extraction led to the isolation of 4 Pandoraea bacterium by PCR using specific primers. Antibiotic susceptibility test were indicated all isolates were resistant to gentamicin, amikacin and imipenem and susceptible to ciprofloxacin, trimethoprim-sulfumethoxazole, piperacillin and tetracycline. Ability to create biofilm was indicated by some of Pandoraea isolates. According to findings of this study, ability to synthesis biofilm by Pandoraea isolates and resistance to some antibiotics are very important. Conclusions Our study notes the role of P. pnomenusa as an emerging pathogen that can cause chronic lung colonization in CF patients. Identification tools need to be accurate and must be based on molecular techniques. Also our findings should raise awareness about antibiotic resistance in cystic fibrosis patients in Iran and ability of including bacterial agents to produce biofilm is an alarm for public health. Thus clinicians should exercise caution about finding of clinical relevance of this pathogen to the infection and prescribing antibiotics, especially in cases of children infections.
Collapse
|
20
|
Kenna DTD, Coward A, Perry C, Pike R, Schaefer U, Turton J, Green H, Jones AM, Bright-Thomas RJ, Burns P, Narayan O, Wilkinson S, Turton JF. Investigation of a Pandoraea apista cluster common to adult and paediatric cystic fibrosis patients attending two hospitals in the same city. J Med Microbiol 2019; 68:1081-1095. [DOI: 10.1099/jmm.0.001010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Dervla T. D. Kenna
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Amy Coward
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Claire Perry
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Rachel Pike
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Ulf Schaefer
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | | | - Heather Green
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Andrew M. Jones
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Rowland J. Bright-Thomas
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Phillipa Burns
- Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| | - Omendra Narayan
- Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| | | | - Jane F. Turton
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
21
|
|
22
|
Dupont C, Aujoulat F, Chiron R, Condom P, Jumas-Bilak E, Marchandin H. Highly Diversified Pandoraea pulmonicola Population during Chronic Colonization in Cystic Fibrosis. Front Microbiol 2017; 8:1892. [PMID: 29056926 PMCID: PMC5635052 DOI: 10.3389/fmicb.2017.01892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023] Open
Abstract
Several environmental bacteria are considered as opportunistic pathogens in cystic fibrosis (CF) and are able to persistently colonize the CF respiratory tract (CFRT). Beside Pseudomonas aeruginosa and Burkholderia cepacia complex, Pandoraea spp. are defined as pathogenic. During chronic colonization, adaptive evolution and diversified population have been demonstrated, notably for P. aeruginosa. However, the persistence of Pandoraea in the CFRT remains largely unexplored. We studied genomic and phenotypic traits of Pandoraea pulmonicola isolates successively recovered from the airways of a single CF patient and relate the results to qualitative and quantitative evolution of other cultivable pathogens and to patient clinical status. A total of 31 isolates recovered from 18 sputum samples over a 7-year period in a single CF patient were studied. Genome dynamics was assessed by pulsed-field gel electrophoresis, ERIC-PCR fingerprinting and 16S rRNA gene PCR-temporal temperature gel electrophoresis. Phenotypic features included antimicrobial susceptibility, motility, biofilm production, and virulence in Caenorhabditis elegans model. Variability was observed for all the characteristics studied leading to highly diversified patterns (24 patterns) for the 31 clonally related isolates. Some of these modifications, mainly genomic events were concomitantly observed with CFRT microbiota composition shifts and with severe exacerbations. The diversity of P. pulmonicola population studied, observed for isolates recovered from successive samples but also within a sample suggested that existence of a diversified population may represent a patho-adaptive strategy for host persistence in the heterogeneous and fluctuating CFRT environment.
Collapse
Affiliation(s)
- Chloé Dupont
- Equipe Pathogènes Hydriques, Santé, Environnements, UMR 5569 Hydrosciences Montpellier, U.F.R des Sciences Pharmaceutiques et Biologiques and Université Montpellier, Montpellier, France
| | - Fabien Aujoulat
- Equipe Pathogènes Hydriques, Santé, Environnements, UMR 5569 Hydrosciences Montpellier, U.F.R des Sciences Pharmaceutiques et Biologiques and Université Montpellier, Montpellier, France
| | - Raphaël Chiron
- Centre de Ressources et de Compétences pour la Mucoviscidose, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Pauline Condom
- Equipe Pathogènes Hydriques, Santé, Environnements, UMR 5569 Hydrosciences Montpellier, U.F.R des Sciences Pharmaceutiques et Biologiques and Université Montpellier, Montpellier, France
| | - Estelle Jumas-Bilak
- Equipe Pathogènes Hydriques, Santé, Environnements, UMR 5569 Hydrosciences Montpellier, U.F.R des Sciences Pharmaceutiques et Biologiques and Université Montpellier, Montpellier, France.,Laboratoire d'Hygiène Hospitalière, Hôpital Saint-Eloi, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Hélène Marchandin
- Equipe Pathogènes Hydriques, Santé, Environnements, UMR 5569 Hydrosciences Montpellier, U.F.R des Sciences Pharmaceutiques et Biologiques and Université Montpellier, Montpellier, France.,Service de Microbiologie, Hôpital Carémeau, Centre Hospitalier Universitaire de Nîmes, Nîmes, France.,Laboratoire de Bactériologie, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| |
Collapse
|
23
|
Skolnik K, Nguyen A, Thornton CS, Waddell B, Williamson T, Rabin HR, Parkins MD. Group B streptococcus (GBS) is an important pathogen in human disease- but what about in cystic fibrosis? BMC Infect Dis 2017; 17:660. [PMID: 28969684 PMCID: PMC5625721 DOI: 10.1186/s12879-017-2729-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is a common commensal capable of causing severe invasive infections. Most GBS infections occur in neonates (often as pneumonia). GBS can also cause infection in adults with diabetes and other immunological impairments but rarely leads to pneumonia in adults. GBS has occasionally been found in the sputum of Cystic Fibrosis (CF) patients, an inherited condition known for progressive lung disease. However, the epidemiology and clinical significance of GBS in CF are not understood. METHODS We retrospectively reviewed a large single-centre adult CF population with an associated comprehensive, prospectively collected bacterial biobank beginning in 1978. We identified all individuals with GBS isolated from their sputum on at least one occasion. The primary outcome was risk of pulmonary exacerbation (PEx) at the time of the first GBS isolate compared to the preceding visit. Secondary outcomes included determining: prevalence of GBS infection in a CF population, whether GBS infections where transient or persistent, whether GBS strains were shared among patients, change in % predicted FEV1 at the time of GBS isolate compared to the preceding visit, PEx frequency after the first GBS isolate, change in % predicted FEV1 after the first GBS isolate, and complications of GBS infection. RESULTS GBS was uncommon, infecting 3.5% (11/318) adults within our cohort. Only three individuals developed persistent GBS infection, all lasting > 12 months. There were no shared GBS strains among patients. PEx risk was not increased at initial GBS isolation (RR 5.0, CI 0.69-36.1, p=0.10). In the two years preceding initial GBS isolation compared to the two following years, there was no difference in PEx frequency (median 2, range 0-4 vs 1, range 0 to 5, respectively, p=0.42) or lung function decline, as measured by % predicted FEV1, (median -1.0%, range -19 to 7% vs median -6.0%, range -18 to 22%, p=0.86). There were no invasive GBS infections. CONCLUSION In adults with CF, GBS is uncommon and is generally a transient colonizer of the lower airways. Despite the presence of structural lung disease and impaired innate immunity in CF, incident GBS infection did not increase PEx risk, PEx frequency, rate of lung function decline, or other adverse clinical outcomes.
Collapse
Affiliation(s)
- Kate Skolnik
- Department of Medicine, University of Calgary, 7007 14th Street SW, Calgary, AB, T2V 1P9, Canada. .,Department of Community Health Sciences, University of Calgary, Third Floor TRW Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| | - Austin Nguyen
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Christina S Thornton
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Barbara Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tyler Williamson
- Department of Community Health Sciences, University of Calgary, Third Floor TRW Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Harvey R Rabin
- Department of Medicine, University of Calgary, 7007 14th Street SW, Calgary, AB, T2V 1P9, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Michael D Parkins
- Department of Medicine, University of Calgary, 7007 14th Street SW, Calgary, AB, T2V 1P9, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
24
|
Marguet C, Lémée L, Morisse-Pradier H, Couderc L. [Infections in cystic fibrosis: Up-to-date]. Arch Pediatr 2017; 23:12S33-12S38. [PMID: 28231891 DOI: 10.1016/s0929-693x(17)30060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review focused on the news in CF airways infection. International guidelines were provided for the care of non tuberculous mycobacteria, and recent studies stressed on the benefit effect of azithromycin or combined antibiotics. The identification of multiresistant environmental bacteria in airways made to account for little-known consequences. Early diagnosis and eradication of Pseudomonas aeruginosa and Staphylococcus aureus methi-R were still a concern, and reports were proposed. However, the studies on staphylococcus methi-R should be interpreted as regards the European or American continent. Thus, levofloxacine has demonstrated its efficacy without enhancing the efficiency. This drug will increase the choice for treating the patient, but no study were provided on the expected modification of the patient microbiota and the known risk of emergent resistance to antibiotics. Lastly, this review underlined that the CF practitioner was encouraged to search and not underestimate the presence of fungus, of which the not so well studied Aspergillus fumigatus.
Collapse
Affiliation(s)
- C Marguet
- Unité de Pneumologie et Allergologie pédiatrique & CRCM mixte, Département de pédiatrie médicale, Hôpital Universitaire Charles Nicolle, Université de Rouen, France; Groupe de Recherche sur les antimicrobiens et les microorganismes (GRAM-02), UPRES EA 2656, UFR Médecine Pharmacie, Université de Rouen, France.
| | - L Lémée
- Groupe de Recherche sur les antimicrobiens et les microorganismes (GRAM-02), UPRES EA 2656, UFR Médecine Pharmacie, Université de Rouen, France; Département de Microbiologie, Hôpital Universitaire Charles Nicolle, Université de Rouen, France
| | - H Morisse-Pradier
- CRCM-mixte, Service de pneumologie, Hôpital Universitaire Charles Nicolle, Université de Rouen, France
| | - L Couderc
- Unité de Pneumologie et Allergologie pédiatrique & CRCM mixte, Département de pédiatrie médicale, Hôpital Universitaire Charles Nicolle, Université de Rouen, France
| |
Collapse
|