1
|
Active neuroborreliosis or inflammation: are the diagnostic guidelines at stake? Acta Neurol Belg 2019; 119:207-214. [PMID: 30556097 DOI: 10.1007/s13760-018-01067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Neuroborreliosis can induce a variety of neurological syndromes: e.g., cranial neuritis, plexitis, radiculitis, meningitis, cerebellitis, … We report on five cases of patients with a diagnosis of neuroborreliosis based on clinical symptoms, serologic tests and MR imaging results. However, neither of them fulfils the diagnostic criteria for definite neuroborreliosis. Are the diagnostic criteria still valid or is there a need to revise them? Is our diagnosis correct? Are these cases post-Lyme auto-immune neuronal inflammation, and not due to still active spirochetal infection? Do we need to consider immunosuppressive therapy instead of third-generation cephalosporins?
Collapse
|
2
|
Geebelen L, Van Cauteren D, Devleesschauwer B, Moreels S, Tersago K, Van Oyen H, Speybroeck N, Lernout T. Combining primary care surveillance and a meta-analysis to estimate the incidence of the clinical manifestations of Lyme borreliosis in Belgium, 2015–2017. Ticks Tick Borne Dis 2019; 10:598-605. [DOI: 10.1016/j.ttbdis.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/22/2018] [Accepted: 12/23/2018] [Indexed: 02/07/2023]
|
3
|
Jaenson TGT, Petersson EH, Jaenson DGE, Kindberg J, Pettersson JHO, Hjertqvist M, Medlock JM, Bengtsson H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Parasit Vectors 2018; 11:477. [PMID: 30153856 PMCID: PMC6114827 DOI: 10.1186/s13071-018-3057-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Tick-borne encephalitis (TBE) is one tick-transmitted disease where the human incidence has increased in some European regions during the last two decades. We aim to find the most important factors causing the increasing incidence of human TBE in Sweden. Based on a review of published data we presume that certain temperature-related variables and the population densities of transmission hosts, i.e. small mammals, and of primary tick maintenance hosts, i.e. cervids and lagomorphs, of the TBE virus vector Ixodes ricinus, are among the potentially most important factors affecting the TBE incidence. Therefore, we compare hunting data of the major tick maintenance hosts and two of their important predators, and four climatic variables with the annual numbers of human cases of neuroinvasive TBE. Data for six Swedish regions where human TBE incidence is high or has recently increased are examined by a time-series analysis. Results from the six regions are combined using a meta-analytical method. Results With a one-year time lag, the roe deer (Capreolus capreolus), red deer (Cervus elaphus), mountain hare (Lepus timidus) and European hare (Lepus europaeus) showed positive covariance; the Eurasian elk (moose, Alces alces) and fallow deer (Dama dama) negative covariance; whereas the wild boar (Sus scrofa), lynx (Lynx lynx), red fox (Vulpes vulpes) and the four climate parameters showed no significant covariance with TBE incidence. All game species combined showed positive covariance. Conclusions The epidemiology of TBE varies with time and geography and depends on numerous factors, i.a. climate, virus genotypes, and densities of vectors, tick maintenance hosts and transmission hosts. This study suggests that the increased availability of deer to I. ricinus over large areas of potential tick habitats in southern Sweden increased the density and range of I. ricinus and created new TBEV foci, which resulted in increased incidence of human TBE. New foci may be established by TBE virus-infected birds, or by birds or migrating mammals infested with TBEV-infected ticks. Generally, persistence of TBE virus foci appears to require presence of transmission-competent small mammals, especially mice (Apodemus spp.) or bank voles (Myodes glareolus). Electronic supplementary material The online version of this article (10.1186/s13071-018-3057-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas G T Jaenson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18d, SE-752 36, Uppsala, Sweden.
| | - Erik H Petersson
- Department of Aquatic Resources, Division of Freshwater Research, Swedish University of Agricultural Sciences, Stångholmsvägen 2, SE-178 93, Drottningholm, Sweden
| | - David G E Jaenson
- Department of Automatic Control, Lund University, SE-221 00, Lund, Sweden
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - John H-O Pettersson
- Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Lovisenberggata 8, N-0456, Oslo, Norway.,Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, New South Wales, 2006, Australia.,Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Marika Hjertqvist
- Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Jolyon M Medlock
- Medical Entomology Group, Emergency Response Department, Public Health England, Porton Down, Salisbury, UK.,Health Protection Research Unit in Emerging Infections & Zoonoses, Porton Down, Salisbury, UK
| | - Hans Bengtsson
- Swedish Meteorological and Hydrological Institute (SMHI), Gothenburg, Sweden
| |
Collapse
|