1
|
Fukushima S, Hagiya H, Honda H, Ishida T, Shoji R, Hasegawa K, Otsuka F. Calcium polystyrene sulfonate-induced rectal ulcer causing E. coli native-valve infective endocarditis. Clin J Gastroenterol 2024; 17:472-476. [PMID: 38528197 PMCID: PMC11127893 DOI: 10.1007/s12328-024-01949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Escherichia coli-associated native-valve infective endocarditis is a rare disease that affects elderly patients with underlying risk factors such as diabetes mellitus, malignancy, and renal failure. Long-term use of calcium polystyrene sulfonate is a potential risk factor for gastrointestinal mucosal damage or even colorectal ulcers. Herein, we describe a fatal case of a 66-year-old Japanese man with diabetes mellitus and renal failure who was prescribed calcium polystyrene sulfonate (CPS) for 11 years and developed a CPS-induced rectal ulcer, leading to E. coli native-valve infective endocarditis. The patient was admitted to our hospital due to acute-onset impaired consciousness. As a result of the systemic investigation, he was diagnosed with E. coli bacteremia accompanied by multiple cerebral infarctions and an acute hemorrhagic rectal ulcer. Transesophageal echocardiography revealed a 20-mm vegetative structure on the mitral valve, resulting in a final diagnosis of E. coli-associated infective endocarditis. After rectal resection, mitral valve replacement surgery was performed; however, the patient died shortly after surgery. Pathological findings of the resected rectum showed deposition of a basophilic crystalline material suggesting the presence of CPS. Our case highlights the potential risk of colorectal ulcers in a long-term CPS user, which can trigger bacterial translocation and endocarditis as fatal complications.
Collapse
Affiliation(s)
- Shinnosuke Fukushima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kitaku, Okayama, 700-8558, Japan
| | - Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kitaku, Okayama, 700-8558, Japan.
| | - Hiroyuki Honda
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kitaku, Okayama, 700-8558, Japan
| | - Tomoharu Ishida
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kitaku, Okayama, 700-8558, Japan
| | - Ryohei Shoji
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kou Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kitaku, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kitaku, Okayama, 700-8558, Japan
| |
Collapse
|
2
|
Sun Y, Wang X, Gong Q, Li J, Huang H, Xue F, Dai J, Tang F. Extraintestinal Pathogenic Escherichia coli Utilizes Surface-Located Elongation Factor G to Acquire Iron from Holo-Transferrin. Microbiol Spectr 2022; 10:e0166221. [PMID: 35477220 PMCID: PMC9045202 DOI: 10.1128/spectrum.01662-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) can cause systemic infections in both humans and animals. As an essential nutrient, iron is strictly sequestered by the host. Circumventing iron sequestration is a determinant factor for ExPEC infection. However, the ExPEC iron acquisition mechanism, particularly the mechanism of transferrin (TF) acquisition, remains unclear. This study reports that iron-saturated holo-TF can be utilized by ExPEC to promote its growth in culture medium and survival in macrophages. ExPEC specifically bound to holo-TF instead of iron-free apo-TF via the surface located elongation factor G (EFG) in both culture medium and macrophages. As a moonlighting protein, EFG specifically bound holo-TF and also released iron in TF. These two functions were performed by different domains of EFG, in which the N-terminal domains were responsible for holo-TF binding and the C-terminal domains were responsible for iron release. The functions of EFG and its domains have also been further confirmed by surface-display vectors. The surface overexpression of EFG bound significantly more holo-TF in macrophages and significantly improved bacterial intracellular survival ability. Our findings reveal a novel iron acquisition mechanism involving EFG, which suggests novel research avenues into the molecular mechanism of ExPEC resistance to nutritional immunity. IMPORTANCE Extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen causing systemic infections in humans and animals. The competition for iron between ExPEC and the host is a determinant for ExPEC to establish a successful infection. Here, we sought to elucidate the role of transferrin (TF) in the interaction between ExPEC and the host. Our results revealed that holo-TF could be utilized by ExPEC to enhance its growth in culture medium and survival in macrophages. Furthermore, the role of elongation factor G (EFG), a novel holo-TF-binding and TF-iron release protein, was confirmed in this study. Our work provides insights into the iron acquisition mechanism of ExPEC, deepens understanding of the interaction between holo-TF and pathogens, and broadens further researches into the molecular mechanism of ExPEC pathogenicity.
Collapse
Affiliation(s)
- Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuhang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qianwen Gong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haosheng Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Sagar VVS, Kamat S, Akhil CS, Acharya S, Shukla S, Kumar S. Escherichia coli urosepsis leading to native valve endocarditis. JOURNAL OF THE PRACTICE OF CARDIOVASCULAR SCIENCES 2022. [DOI: 10.4103/jpcs.jpcs_7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|