1
|
Rathore D, Chauhan P, Bonagiri A, Gandhi L, Maisnam D, Kumar R, Row AT, Kesavulu MM, Venkataramana M. Non-RBD peptides of SARS-CoV-2 spike protein exhibit immunodominance as they elicit both innate and adaptive immune responses. Heliyon 2024; 10:e39941. [PMID: 39568852 PMCID: PMC11577203 DOI: 10.1016/j.heliyon.2024.e39941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Severe acute respiratory coronavirus-2 (SARS-CoV-2) emerged in 2019 as a new virus and caused worldwide outbreaks, quickly turning into a pandemic disease called coronavirus disease-19 (COVID-19). All the existing methodologies were used for developing vaccines for this virus. But sporadic infections of this virus and the emergence of new strains to date suggest the incomplete protection offered by the developed vaccines and the need for new research. In this direction, we identified five epitopes present in the non-RBD region and on the surface of the spike protein by in silico analysis. They are epitope I (aa 80-90), epitope II (aa 262-270), and a small protein with three epitopes (aa 1059-1124). Antigenicity scores of these epitopes were found to be higher than the full length spike protein and its RBD region. These epitopes showed high conserveness across the emerging strains, high immunogenicity, non-toxicity, no homology with human sequences and high affinity for MHC class I & II molecules. Antibodies raised against these epitopes interacted with the bacterially expressed spike protein in western blotting. The antiserum of COVID-19 recovered participants reacted with the developed epitopes (small protein). Furthermore, in the presence of the respective antiserum and COVID-19 convalescent serum, these epitopes successfully fixed the complement, implying a possible role in innate immunity. The epitopes were also found to activate the peripheral blood mononuclear cells (PBMCs) isolated from the blood samples of COVID-19 recovered/vaccinated participants, suggesting a possible role in adaptive immunity. The need for the new SARS-CoV-2 vaccines is further highlighted in light of current reports about the side effects of a developed vaccine (AstraZeneca) and the circulating new strains. The epitopes presented in this study represent the potential immunogens and expect certain pitfalls of the existing vaccines would be sealed.
Collapse
Affiliation(s)
- Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Ramesh Kumar
- Health Centre, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Anupama T Row
- Health Centre, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - M M Kesavulu
- Department of Basic Sciences and Humanities, Sree Vidyanikethan Engineering College, Tirupati, Andhra Pradesh, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, 500046, Hyderabad, Telangana State, India
| |
Collapse
|
2
|
Sawant J, Patil A, Kurle S. A Review: Understanding Molecular Mechanisms of Antibody-Dependent Enhancement in Viral Infections. Vaccines (Basel) 2023; 11:1240. [PMID: 37515055 PMCID: PMC10384352 DOI: 10.3390/vaccines11071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Antibody Dependent Enhancement (ADE) of an infection has been of interest in the investigation of many viruses. It is associated with the severity of the infection. ADE is mediated by non-neutralizing antibodies, antibodies at sub-neutralizing concentrations, or cross-reactive non-neutralizing antibodies. Treatments like plasma therapy, B cell immunizations, and antibody therapies may trigger ADE. It is seen as an impediment to vaccine development as well. In viruses including the Dengue virus (DENV), severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus, human immunodeficiency virus (HIV), Ebola virus, Zika virus, and influenza virus, the likely mechanisms of ADE are postulated and described. ADE improves the likelihood of productively infecting cells that are expressing the complement receptor or the Fc receptor (FcR) rather than the viral receptors. ADE occurs when the FcR, particularly the Fc gamma receptor, and/or complement system, particularly Complement 1q (C1q), allow the entry of the virus-antibody complex into the cell. Moreover, ADE alters the innate immune pathways to escape from lysis, promoting viral replication inside the cell that produces viral particles. This review discusses the involvement of FcR and the downstream immunomodulatory pathways in ADE, the complement system, and innate antiviral signaling pathways modification in ADE and its impact on facilitating viral replication. Additionally, we have outlined the modes of ADE in the cases of different viruses reported until now.
Collapse
Affiliation(s)
- Jyoti Sawant
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| | - Ajit Patil
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| | - Swarali Kurle
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| |
Collapse
|
3
|
Chow MYT, Pan HW, Seow HC, Lam JKW. Inhalable neutralizing antibodies - promising approach to combating respiratory viral infections. Trends Pharmacol Sci 2023; 44:85-97. [PMID: 36566131 DOI: 10.1016/j.tips.2022.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Monoclonal antibodies represent an exciting class of therapeutics against respiratory viral infections. Notwithstanding their specificity and affinity, the conventional parenteral administration is suboptimal in delivering antibodies for neutralizing activity in the airways due to the poor distribution of macromolecules to the respiratory tract. Inhaled therapy is a promising approach to overcome this hurdle in a noninvasive manner, while advances in antibody engineering have led to the development of unique antibody formats which exhibit properties desirable for inhalation. In this Opinion, we examine the major challenges surrounding the development of inhaled antibodies, identify knowledge gaps that need to be addressed and provide strategies from a drug delivery perspective to enhance the efficacy and safety of neutralizing antibodies against respiratory viral infections.
Collapse
Affiliation(s)
- Michael Y T Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Harry W Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Han Cong Seow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China; School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
4
|
Elfessi Z, Doyle R, Young L, Knaub M, Yamanaka T. Antibody dependent enhancement-induced hypoxic respiratory failure: A case report. VISUAL JOURNAL OF EMERGENCY MEDICINE 2023; 30:101602. [PMID: 36718416 PMCID: PMC9876737 DOI: 10.1016/j.visj.2023.101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Affiliation(s)
- Zane Elfessi
- Department of Emergency Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S Damen Avenue, Chicago, IL 60612, United States
- Department of Pharmacy Practice, University of Illinois-Chicago College of Pharmacy, 833 S Wood Street, Chicago, IL 60612, United States
| | - Richard Doyle
- Department of Emergency Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S Damen Avenue, Chicago, IL 60612, United States
| | - Lisa Young
- Department of Emergency Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S Damen Avenue, Chicago, IL 60612, United States
| | - Mark Knaub
- Department of Emergency Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S Damen Avenue, Chicago, IL 60612, United States
| | - Travis Yamanaka
- Department of Pulmonary and Critical Care, Jesse Brown Veterans Affairs Medical Center, 820 S Damen Avenue, Chicago, IL 60612, United States
| |
Collapse
|
5
|
Boldova AE, Korobkin JD, Nechipurenko YD, Sveshnikova AN. Theoretical Explanation for the Rarity of Antibody-Dependent Enhancement of Infection (ADE) in COVID-19. Int J Mol Sci 2022; 23:11364. [PMID: 36232664 PMCID: PMC9569501 DOI: 10.3390/ijms231911364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Global vaccination against the SARS-CoV-2 virus has proved to be highly effective. However, the possibility of antibody-dependent enhancement of infection (ADE) upon vaccination remains underinvestigated. Here, we aimed to theoretically determine conditions for the occurrence of ADE in COVID-19. We developed a series of mathematical models of antibody response: model Ab-a model of antibody formation; model Cv-a model of infection spread in the body; and a complete model, which combines the two others. The models describe experimental data on SARS-CoV and SARS-CoV-2 infections in humans and cell cultures, including viral load dynamics, seroconversion times and antibody concentration kinetics. The modelling revealed that a significant proportion of macrophages can become infected only if they bind antibodies with high probability. Thus, a high probability of macrophage infection and a sufficient amount of pre-existing antibodies are necessary for the development of ADE in SARS-CoV-2 infection. However, from the point of view of the dynamics of pneumocyte infection, the two cases where the body has a high concentration of preexisting antibodies and a high probability of macrophage infection and where there is a low concentration of antibodies in the body and no macrophage infection are indistinguishable. This conclusion could explain the lack of confirmed ADE cases for COVID-19.
Collapse
Affiliation(s)
- Anna E. Boldova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Julia D. Korobkin
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
| | - Yury D. Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia N. Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya Str., 109029 Moscow, Russia
- Department of Normal Physiology, Sechenov First Moscow State Medical University, 8/2 Trubetskaya St., 119991 Moscow, Russia
- Faculty of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|