1
|
Dekker HM, Stroomberg GJ, Van der Molen AJ, Prokop M. Review of strategies to reduce the contamination of the water environment by gadolinium-based contrast agents. Insights Imaging 2024; 15:62. [PMID: 38411847 PMCID: PMC10899148 DOI: 10.1186/s13244-024-01626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Gadolinium-based contrast agents (GBCA) are essential for diagnostic MRI examinations. GBCA are only used in small quantities on a per-patient basis; however, the acquisition of contrast-enhanced MRI examinations worldwide results in the use of many thousands of litres of GBCA per year. Data shows that these GBCA are present in sewage water, surface water, and drinking water in many regions of the world. Therefore, there is growing concern regarding the environmental impact of GBCA because of their ubiquitous presence in the aquatic environment. To address the problem of GBCA in the water system as a whole, collaboration is necessary between all stakeholders, including the producers of GBCA, medical professionals and importantly, the consumers of drinking water, i.e. the patients. This paper aims to make healthcare professionals aware of the opportunity to take the lead in making informed decisions about the use of GBCA and provides an overview of the different options for action.In this paper, we first provide a summary on the metabolism and clinical use of GBCA, then the environmental fate and observations of GBCA, followed by measures to reduce the use of GBCA. The environmental impact of GBCA can be reduced by (1) measures focusing on the application of GBCA by means of weight-based contrast volume reduction, GBCA with higher relaxivity per mmol of Gd, contrast-enhancing sequences, and post-processing; and (2) measures that reduce the waste of GBCA, including the use of bulk packaging and collecting residues of GBCA at the point of application.Critical relevance statement This review aims to make healthcare professionals aware of the environmental impact of GBCA and the opportunity for them to take the lead in making informed decisions about GBCA use and the different options to reduce its environmental burden.Key points• Gadolinium-based contrast agents are found in sources of drinking water and constitute an environmental risk.• Radiologists have a wide spectrum of options to reduce GBCA use without compromising diagnostic quality.• Radiology can become more sustainable by adopting such measures in clinical practice.
Collapse
Affiliation(s)
- Helena M Dekker
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | - Gerard J Stroomberg
- RIWA-Rijn - Association of River Water Works, Groenendael 6, 3439 LV, Nieuwegein, The Netherlands
| | - Aart J Van der Molen
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Richard G, Noll C, Archambault M, Lebel R, Tremblay L, Ait-Mohand S, Guérin B, Blondin DP, Carpentier AC, Lepage M. Contribution of perfusion to the 11 C-acetate signal in brown adipose tissue assessed by DCE-MRI and 68 Ga-DOTA PET in a rat model. Magn Reson Med 2020; 85:1625-1642. [PMID: 33010059 DOI: 10.1002/mrm.28535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/15/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Determine if dynamic contrast enhanced (DCE) -MRI and/or 68 gallium 1,4,7,10-tetraazacyclododecane N, N', N″, N‴-tretraacetic acid (68 Ga-DOTA) positron emission tomography (PET) can assess perfusion in rat brown adipose tissue (BAT). Evaluate changes in perfusion between cold-stimulated and heat-inhibited BAT. Determine if the 11 C-acetate pharmacokinetic model can be constrained with perfusion information to improve assessment of BAT oxidative metabolism. METHODS Rats were split into three groups. In group 1 (N = 6), DCE-MRI with gadobutrol was compared directly to 68 Ga-DOTA PET following exposure to 10 °C for 48 h. 11 C-Acetate PET was also performed to assess oxidation. In group 2 (N = 4), only 68 Ga-DOTA PET was acquired following exposure to 10 °C for 48 h. Finally, in group 3 (N = 10), perfusion was assessed with DCE-MRI in rats exposed to 10 °C or 30 °C for 48 h, and oxidation was measured with 11 C-acetate. Perfusion was quantified with a two-compartment pharmacokinetic model, while oxidation was assessed by a four-compartment model. RESULTS DCE-MRI and 68 Ga-DOTA PET provided similar perfusion measures, but a decrease in the perfusion signal was noted with longer imaging sessions. Exposure to 10 °C or 30 °C did not affect the perfusion measures, but the 11 C-acetate signal increased in BAT at 10 °C. Without prior information about blood volume, the 11 C-acetate compartment model overestimated blood volume and underestimated oxidation in 10 °C BAT. CONCLUSION Precise assessment of oxidation via 11 C-acetate PET requires prior information about blood volume which can be obtained by DCE-MRI or 68 Ga-DOTA PET. Since perfusion can change rapidly, simultaneous PET-MRI would be preferred.
Collapse
Affiliation(s)
- Gabriel Richard
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Archambault
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Réjean Lebel
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Tremblay
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Samia Ait-Mohand
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Lepage
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Urmeneta Ulloa J, Álvarez Vázquez A, Martínez de Vega V, Cabrera JÁ. Evaluation of Cardiac Shunts With
4D
Flow Cardiac Magnetic Resonance: Intra‐ and Interobserver Variability. J Magn Reson Imaging 2020; 52:1055-1063. [DOI: 10.1002/jmri.27158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Javier Urmeneta Ulloa
- Cardiology Department. Quirón‐Salud University Hospital European University of Madrid Madrid Spain
| | - Ana Álvarez Vázquez
- Radiology Department. Quirón‐Salud University Hospital European University of Madrid Madrid Spain
| | - Vicente Martínez de Vega
- Radiology Department. Quirón‐Salud University Hospital European University of Madrid Madrid Spain
| | - José Ángel Cabrera
- Cardiology Department. Quirón‐Salud University Hospital European University of Madrid Madrid Spain
| |
Collapse
|
4
|
Alvarez A, Martinez V, Pizarro G, Recio M, Cabrera JÁ. Clinical use of 4D flow MRI for quantification of aortic regurgitation. Open Heart 2020; 7:e001158. [PMID: 32153789 PMCID: PMC7046971 DOI: 10.1136/openhrt-2019-001158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Objective The main objective of the present study was to compare the use of four-dimensional (4D) flow MRI with the habitual sequence (two-dimensional phase-contrast (2DPC) MRI) for the assessment of aortic regurgitation (AR) in the clinical routine. Methods This was a retrospective, observational cohort study of patients with varying grades of AR. For the purposes of the present study, we selected all the cases with a regurgitant fraction (RF)>5% as determined by 2DPC MRI (n=34). In all cases, both sequences (2DPC and 4D flow MRI) were acquired in a single session to ensure comparability. We compared the results of the two techniques by evaluating forward flow, regurgitant flow and regurgitation fraction. Then, the patients were divided into subgroups to determine if these factors had any influence on the measurements: aortic diameter (≤ vs >38 mm), valve anatomy (tricuspid vs bicuspid/quadricuspid), stenosis (gradient ≥15 vs <15) and region of interest location (aortic valve vs sinotubular junction). Results No statistically significant differences were observed between the two techniques with Pearson’s correlation coefficients (r) of forward flow (r=0.826/p value<0001), regurgitant flow (r=0.866/p value<0001) and RF (r=0.761/p value<0001). Conclusions The findings of this study confirm the value of 4D flow MRI for grading AR in clinical practice with an excellent correlation with the standard technique (2DPC MRI).
Collapse
Affiliation(s)
- Ana Alvarez
- Imaging Department, Hospital Universitario Quironsalud Madrid, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | - Vicente Martinez
- Imaging Department, Hospital Universitario Quironsalud Madrid, Madrid, Spain
| | - Gonzalo Pizarro
- Universidad Europea de Madrid, Madrid, Spain.,Department of Cardiology, Complejo Hospitalario Ruber Juan Bravo, Madrid, Spain
| | - Manuel Recio
- Imaging Department, Hospital Universitario Quironsalud Madrid, Madrid, Spain
| | - Jose Ángel Cabrera
- Department of Cardiology, Hospital Universitario Quironsalud Madrid, Madrid, Madrid, Spain
| |
Collapse
|
5
|
Tissue characterisation and myocardial mechanics using cardiac MRI in children with hypertrophic cardiomyopathy. Cardiol Young 2019; 29:1459-1467. [PMID: 31769372 PMCID: PMC7018600 DOI: 10.1017/s1047951119002397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Distinguishing between hypertrophic cardiomyopathy and other causes ofleft ventricular hypertrophy can be difficult in children. We hypothesised that cardiac MRI T1 mapping could improve diagnosis of paediatric hypertrophic cardiomyopathy and that measures of myocardial function would correlate with T1 times and extracellular volume fraction. METHODS Thirty patients with hypertrophic cardiomyopathy completed MRI with tissue tagging, T1-mapping, and late gadolinium enhancement. Left ventricular circumferential strain was calculated from tagged images. T1, partition coefficient, and synthetic extracellular volume were measured at base, mid, apex, and thickest area of myocardial hypertrophy. MRI measures compared to cohort of 19 healthy children and young adults. Mann-Whitney U, Spearman's rho, and multivariable logistic regression were used for statistical analysis. RESULTS Hypertrophic cardiomyopathy patients had increased left ventricular ejection fraction and indexed mass. Hypertrophic cardiomyopathy patients had decreased global strain and increased native T1 (-14.3% interquartile range [-16.0, -12.1] versus -17.3% [-19.0, -15.7], p < 0.001 and 1015 ms [991, 1026] versus 990 ms [972, 1001], p = 0.019). Partition coefficient and synthetic extracellular volume were not increased in hypertrophic cardiomyopathy. Global native T1 correlated inversely with ejection fraction (ρ = -0.63, p = 0.002) and directly with global strain (ρ = 0.51, p = 0.019). A logistic regression model using ejection fraction and native T1 distinguished between hypertrophic cardiomyopathy and control with an area under the receiver operating characteristic curve of 0.91. CONCLUSION In this cohort of paediatric hypertrophic cardiomyopathy, strain was decreased and native T1 was increased compared with controls. Native T1 correlated with both ejection fraction and strain, and a model using native T1 and ejection fraction differentiated patients with and without hypertrophic cardiomyopathy.
Collapse
|
6
|
Abstract
Intravenous gadobutrol [Gadovist™ (EU); Gadavist® (USA)] is a second-generation, extracellular non-ionic macrocyclic gadolinium-based contrast agent (GBCA) that is approved for use in paediatric (including term neonates) and adult patients undergoing diagnostic contrast-enhanced (CE) MRI for visualization of pathological lesions in all body regions or for CE MRA to evaluate perfusion and flow-related abnormalities. Its unique physicochemical profile, including its high thermostability and proton relaxation times, means that gadobutrol is formulated at twice the gadolinium ion concentration of other GBCAs, resulting in a narrower bolus and consequently, improved dynamic image enhancement. Based on > 20 years of experience in the clinical trial and real-world settings (> 50 million doses) and its low risk for developing nephrogenic systemic fibrosis (NSF), gadobutrol represents an effective and safe diagnostic GBCA for use in CE MRI and MRA to visualize pathological lesions and vascular perfusion and flow-related abnormalities in all body regions in a broad spectrum of patients, including term neonates and other paediatric patients, young and elderly adult patients, and those with moderate or severe renal or hepatic impairment or cardiovascular (CV) disease.
Collapse
|
7
|
Muehlberg F, Arnhold K, Fritschi S, Funk S, Prothmann M, Kermer J, Zange L, von Knobelsdorff-Brenkenhoff F, Schulz-Menger J. Comparison of fast multi-slice and standard segmented techniques for detection of late gadolinium enhancement in ischemic and non-ischemic cardiomyopathy - a prospective clinical cardiovascular magnetic resonance trial. J Cardiovasc Magn Reson 2018; 20:13. [PMID: 29458430 PMCID: PMC5819178 DOI: 10.1186/s12968-018-0434-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 02/05/2018] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Segmented phase-sensitive inversion recovery (PSIR) cardiovascular magnetic resonance (CMR) sequences are reference standard for non-invasive evaluation of myocardial fibrosis using late gadolinium enhancement (LGE). Several multi-slice LGE sequences have been introduced for faster acquisition in patients with arrhythmia and insufficient breathhold capability. The aim of this study was to assess the accuracy of several multi-slice LGE sequences to detect and quantify myocardial fibrosis in patients with ischemic and non-ischemic myocardial disease. METHODS Patients with known or suspected LGE due to chronic infarction, inflammatory myocardial disease and hypertrophic cardiomyopathy (HCM) were prospectively recruited. LGE images were acquired 10-20 min after administration of 0.2 mmol/kg gadolinium-based contrast agent. Three different LGE sequences were acquired: a segmented, single-slice/single-breath-hold fast low angle shot PSIR sequence (FLASH-PSIR), a multi-slice balanced steady-state free precession inversion recovery sequence (bSSFP-IR) and a multi-slice bSSFP-PSIR sequence during breathhold and free breathing. Image quality was evaluated with a 4-point scoring system. Contrast-to-noise ratios (CNR) and acquisition time were evaluated. LGE was quantitatively assessed using a semi-automated threshold method. Differences in size of fibrosis were analyzed using Bland-Altman analysis. RESULTS Three hundred twelve patients were enrolled (n = 212 chronic infarction, n = 47 inflammatory myocardial disease, n = 53 HCM) Of which 201 patients (67,4%) had detectable LGE (n = 143 with chronic infarction, n = 27 with inflammatory heart disease and n = 31 with HCM). Image quality and CNR were best on multi-slice bSSFP-PSIR. Acquisition times were significantly shorter for all multi-slice sequences (bSSFP-IR: 23.4 ± 7.2 s; bSSFP-PSIR: 21.9 ± 6.4 s) as compared to FLASH-PSIR (361.5 ± 95.33 s). There was no significant difference of mean LGE size for all sequences in all study groups (FLASH-PSIR: 8.96 ± 10.64 g; bSSFP-IR: 8.69 ± 10.75 g; bSSFP-PSIR: 9.05 ± 10.84 g; bSSFP-PSIR free breathing: 8.85 ± 10.71 g, p > 0.05). LGE size was not affected by arrhythmia or absence of breathhold on multi-slice LGE sequences. CONCLUSIONS Fast multi-slice and standard segmented LGE sequences are equivalent techniques for the assessment of myocardial fibrosis, independent of an ischemic or non-ischemic etiology. Even in patients with arrhythmia and insufficient breathhold capability, multi-slice sequences yield excellent image quality at significantly reduced scan time and may be used as standard LGE approach. TRIAL REGISTRATION ISRCTN48802295 (retrospectively registered).
Collapse
Affiliation(s)
- Fabian Muehlberg
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center - a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Hospital Berlin-Buch, Department of Cardiology and Nephrology, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Kristin Arnhold
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center - a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Hospital Berlin-Buch, Department of Cardiology and Nephrology, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Simone Fritschi
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center - a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Hospital Berlin-Buch, Department of Cardiology and Nephrology, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Stephanie Funk
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center - a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Hospital Berlin-Buch, Department of Cardiology and Nephrology, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Marcel Prothmann
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center - a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Hospital Berlin-Buch, Department of Cardiology and Nephrology, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Josephine Kermer
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center - a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Hospital Berlin-Buch, Department of Cardiology and Nephrology, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Leonora Zange
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center - a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Hospital Berlin-Buch, Department of Cardiology and Nephrology, Lindenberger Weg 80, 13125 Berlin, Germany
| | | | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center - a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Hospital Berlin-Buch, Department of Cardiology and Nephrology, Lindenberger Weg 80, 13125 Berlin, Germany
| |
Collapse
|
8
|
Quantitative analysis of late gadolinium enhancement in hypertrophic cardiomyopathy: comparison of diagnostic performance in myocardial fibrosis between gadobutrol and gadopentetate dimeglumine. Int J Cardiovasc Imaging 2017; 33:1191-1200. [DOI: 10.1007/s10554-017-1101-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/24/2017] [Indexed: 01/20/2023]
|
9
|
Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging. Pediatr Radiol 2016; 46:1822-1830. [PMID: 27576457 DOI: 10.1007/s00247-016-3694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/19/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. OBJECTIVE To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. MATERIALS AND METHODS We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). RESULTS Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). CONCLUSION Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam.
Collapse
|
10
|
Tandon A, James L, Henningsson M, Botnar RM, Potersnak A, Greil GF, Hussain T. A clinical combined gadobutrol bolus and slow infusion protocol enabling angiography, inversion recovery whole heart, and late gadolinium enhancement imaging in a single study. J Cardiovasc Magn Reson 2016; 18:66. [PMID: 27716273 PMCID: PMC5052797 DOI: 10.1186/s12968-016-0285-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/24/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The use of gadolinium contrast agents in cardiovascular magnetic resonance is well-established and serves to improve both vascular imaging as well as enable late gadolinium enhancement (LGE) imaging for tissue characterization. Currently, gadofosveset trisodium, an intravascular contrast agent, combined with a three-dimensional inversion recovery balanced steady state free precession (3D IR bSSFP) sequence, is commonly used in pediatric cardiac imaging and yields excellent vascular imaging, but cannot be used for late gadolinium enhancement. Gadofosveset use remains limited in clinical practice, and manufacture was recently halted, thus an alternative is needed to allow 3D IR bSSFP and LGE in the same study. METHODS Here we propose a protocol to give a bolus of 0.1 mL/kg = 0.1 mmol/kg gadobutrol (GADAVIST/GADOVIST) for time-resolved magnetic resonance angiography (MRA). Subsequently, 0.1 mmol/kg is diluted up to 5 or 7.5 mL with saline and then loaded into intravenous tubing connected to the patient. A 0.5 mL short bolus is infused, then a slow infusion is given at 0.02 or 0.03 mL/s. Image navigated (iNAV) 3D IR bSSFP imaging is initiated 45-60 s after the initiation of the infusion, with a total image acquisition time of ~5 min. If necessary, LGE imaging using phase sensitive inversion recovery reconstruction (PSIR) is performed at 10 min after the infusion is initiated. RESULTS We have successfully performed the above protocol with good image quality on 10 patients with both time-resolved MRA and 3D IR bSSFP iNAV imaging. Our initial attempts to use pencil beam respiratory navigation failed due to signal labeling in the liver by the navigator. We have also performed 2D PSIR LGE successfully, with both LGE positive and LGE negative results. CONCLUSION A bolus of gadobutrol, followed later by a slow infusion, allows time-resolved MRA, 3D IR bSSFP using the iNAV navigation technique, and LGE imaging, all in a single study with a single contrast agent.
Collapse
Affiliation(s)
- Animesh Tandon
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, 75235 Texas USA
| | - Lorraine James
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, 75235 Texas USA
| | - Markus Henningsson
- Department of Imaging and Biomedical Engineering, King’s College London, London, UK
| | - René M. Botnar
- Department of Imaging and Biomedical Engineering, King’s College London, London, UK
- Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Amanda Potersnak
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, 75235 Texas USA
| | - Gerald F. Greil
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, 75235 Texas USA
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, 75235 Texas USA
| |
Collapse
|