1
|
Golden RK, Sutkus LT, Donovan SM, Dilger RN. Dietary supplementation of 3'-sialyllactose or 6'-sialyllactose elicits minimal influence on cognitive and brain development in growing pigs. Front Behav Neurosci 2024; 17:1337897. [PMID: 38268796 PMCID: PMC10806065 DOI: 10.3389/fnbeh.2023.1337897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Sialylated human milk oligosaccharides (HMO), such as 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), are abundant throughout lactation and at much higher concentrations than are present in bovine milk or infant formulas. Previous studies have suggested that sialylated HMO may have neurocognitive benefits in early life. Recent research has focused on infant formula supplementation with key nutrients and bioactives to narrow the developmental gap between formula-fed and breastfed infants. Herein, we investigated the impact of supplemental 3'-SL or 6'-SL on cognitive and brain development at two time-points [postnatal days (PND) 33 and 61]. Two-day-old piglets (N = 75) were randomly assigned to commercial milk replacer ad libitum without or with 3'-SL or 6'-SL (added in a powdered form at a rate of 0.2673% on an as-is weight basis). Cognitive development was assessed via novel object recognition and results were not significant at both time-points (p > 0.05). Magnetic resonance imaging was used to assess structural brain development. Results varied between scan type, diet, and time-point. A main effect of diet was observed for absolute volume of white matter and 9 other regions of interest (ROI), as well as for relative volume of the pons on PND 30 (p < 0.05). Similar effects were observed on PND 58. Diffusion tensor imaging indicated minimal differences on PND 30 (p > 0.05). However, several dietary differences across the diffusion outcomes were observed on PND 58 (p < 0.05) indicating dietary impacts on brain microstructure. Minimal dietary differences were observed from myelin water fraction imaging at either time-point. Overall, sialyllactose supplementation had no effects on learning and memory as assessed by novel object recognition, but may influence temporally-dependent aspects of brain development.
Collapse
Affiliation(s)
- Rebecca K. Golden
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Loretta T. Sutkus
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Ryan N. Dilger
- Neuroscience Program, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
2
|
Epigenetic regulation of fetal brain development in pig. Gene 2022; 844:146823. [PMID: 35988784 DOI: 10.1016/j.gene.2022.146823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023]
Abstract
How fetal brain development is regulated at the molecular level is not well understood. Due to ethical challenges associated with research on the human fetus, large animals particularly pigs are increasingly used to study development and disorders of fetal brain. The pig fetal brain grows rapidly during the last ∼ 50 days before birth which is around day 60 (d60) of pig gestation. But what regulates the onset of accelerated growth of the brain is unknown. The current study tests the hypothesis that epigenetic alteration around d60 is involved in the onset of rapid growth of fetal brain of pig. To test this hypothesis, DNA methylation changes of fetal brain was assessed in a genome-wide manner by Enzymatic Methyl-seq (EM-seq) during two gestational periods (GP): d45 vs. d60 (GP1) and d60 vs. d90 (GP2). The cytosine-guanine (CpG) methylation data was analyzed in an integrative manner with the RNA-seq data generated from the same brain samples from our earlier study. A neural network based modeling approach was implemented to learn changes in methylation patterns of the differentially expressed genes, and then predict methylations of the brain in a genome-wide manner during rapid growth. This approach identified specific methylations that changed in a mutually informative manner during rapid growth of the fetal brain. These methylations were significantly overrepresented in specific genic as well as intergenic features including CpG islands, introns, and untranslated regions. In addition, sex-bias methylations of known single nucleotide polymorphic sites were also identified in the fetal brain ide during rapid growth.
Collapse
|
3
|
Fil JE, Joung S, Zimmerman BJ, Sutton BP, Dilger RN. High-resolution magnetic resonance imaging-based atlases for the young and adolescent domesticated pig (Sus scrofa). J Neurosci Methods 2021; 354:109107. [PMID: 33675840 DOI: 10.1016/j.jneumeth.2021.109107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neurodevelopmental studies utilize the pig as a translational animal model due to anatomical and morphological similarities between the pig and human brain. However, neuroimaging resources are not as well developed for the pig as they are for humans and other animal models. We established a magnetic resonance imaging-based brain atlas at two different ages for biomedical studies utilizing the pig as a preclinical model. NEW METHOD Twenty artificially-reared domesticated male pigs (Sus scrofa) and thirteen sow-reared adolescent domesticated male pigs (Sus scrofa) underwent a series of scans measuring brain macrostructure, microstructure, and arterial cerebral blood volume. RESULTS An atlas for the 4-week-old and 12-week-old pig were created along with twenty-six regions of interest. Normative data for brain measures were obtained and detailed descriptions of the data processing pipelines were provided. COMPARISON WITH EXISTING METHOD Atlases at the two different ages were created for the pig utilizing newer imaging technology and software. This facilitates the performance of longitudinal studies and enables more precise volume measurements in pigs of various ages by appropriately representing the neuroanatomical features of younger and older pigs and accommodating the proportion differences of the brain over time. CONCLUSION Two high-resolution MRI brain atlases specific to the domesticated young and adolescent pig were created using defined image acquisition and data processing methods to facilitate the generation of high-quality normative data for neurodevelopmental research.
Collapse
Affiliation(s)
- Joanne E Fil
- Piglet Nutrition & Cognition Laboratory, University of Illinois, Urbana, IL, 61801, USA; Neuroscience Program, University of Illinois, Urbana, IL, 61801, USA
| | - Sangyun Joung
- Piglet Nutrition & Cognition Laboratory, University of Illinois, Urbana, IL, 61801, USA; Neuroscience Program, University of Illinois, Urbana, IL, 61801, USA
| | - Benjamin J Zimmerman
- Neuroscience Program, University of Illinois, Urbana, IL, 61801, USA; Beckman Institute for Advances Science & Technology, University of Illinois, Urbana, IL, 61801, USA
| | - Bradley P Sutton
- Neuroscience Program, University of Illinois, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois, Urbana, IL, 61801, USA; Beckman Institute for Advances Science & Technology, University of Illinois, Urbana, IL, 61801, USA
| | - Ryan N Dilger
- Piglet Nutrition & Cognition Laboratory, University of Illinois, Urbana, IL, 61801, USA; Neuroscience Program, University of Illinois, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Maternal viral infection causes global alterations in porcine fetal microglia. Proc Natl Acad Sci U S A 2019; 116:20190-20200. [PMID: 31527230 DOI: 10.1073/pnas.1817014116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maternal infections during pregnancy are associated with increased risk of neurodevelopmental disorders, although the precise mechanisms remain to be elucidated. Previously, we established a maternal immune activation (MIA) model using swine, which results in altered social behaviors of piglet offspring. These behavioral abnormalities occurred in the absence of microglia priming. Thus, we examined fetal microglial activity during prenatal development in response to maternal infection with live porcine reproductive and respiratory syndrome virus. Fetuses were obtained by cesarean sections performed 7 and 21 d postinoculation (dpi). MIA fetuses had reduced brain weights at 21 dpi compared to controls. Furthermore, MIA microglia increased expression of major histocompatibility complex class II that was coupled with reduced phagocytic and chemotactic activity compared to controls. High-throughput gene-expression analysis of microglial-enriched genes involved in neurodevelopment, the microglia sensome, and inflammation revealed differential regulation in primary microglia and in whole amygdala tissue. Microglia density was increased in the fetal amygdala at 7 dpi. Our data also reveal widespread sexual dimorphisms in microglial gene expression and demonstrate that the consequences of MIA are sex dependent. Overall, these results indicate that fetal microglia are significantly altered by maternal viral infection, presenting a potential mechanism through which MIA impacts prenatal brain development and function.
Collapse
|