1
|
Sergi CM, Spencer D, Al-Jishi T. Stillbirth Investigations: An Iconographic and Concise Diagnostic Workup in Perinatal Pathology. J Lab Physicians 2023; 15:475-487. [PMID: 37780873 PMCID: PMC10539070 DOI: 10.1055/s-0043-1764485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/23/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Stillbirth is a dramatic event for the parents, health care team, and anyone close to the expectant parents. Multidisciplinary team (MDT) meetings are essential to improve communication in health care. We review the most frequent findings discussed at MDT meetings. Methods A PubMed search was conducted through December 2021 since the inception (1965) using clinical queries with the key terms "stillbirth" AND "investigation" AND "pathology" AND "human." The search strategy included reviews, meta-analyses, randomized controlled trials, clinical trials, and observational studies. This systematic review is based on, but not limited to, the search results. It is the experience of more than 30 years of pediatrics, obstetrics, and pathology staff. Results Two hundred and six articles were screened and complemented through the perusal of congressional activities and personal communications. Pathological findings following perinatal death can be divided into macroscopic, histologic, and placental findings. The placenta is crucial in fetal medicine and is key in determining the cause of stillbirth in a substantial number of events. Perinatal lung disease is essential to evaluate the response of newborns to extrauterine life and address newborns' outcomes appropriately. Conclusions Stillbirth remains one of the less explored areas of medicine, and we can determine the cause in a limited number of cases. Nevertheless, placental pathology is critical in the etiology discovery pathway. Accurate investigations and discussion of photography-supported findings are vital in promoting communication at MDT meetings.
Collapse
Affiliation(s)
- Consolato M. Sergi
- Department of Anatomic Pathology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Deborah Spencer
- Department of Pathology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Taher Al-Jishi
- Department of Obstetrics and Gynecology University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Edwards H, Shelmerdine SC, Arthurs OJ. Forensic post-mortem CT in children. Clin Radiol 2023; 78:839-847. [PMID: 37827594 DOI: 10.1016/j.crad.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 10/14/2023]
Abstract
Post-mortem computed tomography (PMCT) imaging is gaining popularity and acceptance for use alongside forensic autopsies of children, predominantly to aid in the detection of traumatic injuries. Recent research on this topic has provided a breadth of new information regarding the appropriate usage, imaging guidance, and diagnostic accuracy for the identification of different paediatric pathologies. Additionally, advanced CT imaging techniques, such as PMCT angiography or ventilated PMCT, have been trialled, and post-mortem micro-CT is now being used in specialist centres for the assessment of subtle fractures in extracted bone specimens. Various image post-processing methods (e.g., three-dimensional printing from PMCT imaging data) are being used for the illustration of injuries in the medicolegal setting to a lay audience and provide another avenue for the future of forensic radiology research. In this review, the evidence-based principles and benefits of post-mortem imaging for forensic investigation in childhood deaths are presented, with a particular focus on PMCT and current practices. Variations in forensic imaging strategies around the world, published diagnostic accuracy rates, and expected normal post-mortem imaging findings are discussed, as well as potential future applications and research in this area.
Collapse
Affiliation(s)
- H Edwards
- Alder Hey Children's NHS Foundation Trust, Liverpool L12 2AP, UK
| | - S C Shelmerdine
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; UCL Great Ormond Street Institute of Child Health, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, UK
| | - O J Arthurs
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK; UCL Great Ormond Street Institute of Child Health, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, UK.
| |
Collapse
|
3
|
Docter D, Dawood Y, Jacobs K, Hagoort J, Oostra RJ, van den Hoff MJB, Arthurs OJ, de Bakker BS. Microfocus computed tomography for fetal postmortem imaging: an overview. Pediatr Radiol 2023; 53:632-639. [PMID: 36169668 PMCID: PMC10027643 DOI: 10.1007/s00247-022-05517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Over the last few years, fetal postmortem microfocus computed tomography (micro-CT) imaging has increased in popularity for both diagnostic and research purposes. Micro-CT imaging could be a substitute for autopsy, particularly in very early gestation fetuses for whom autopsy can be technically challenging and is often unaccepted by parents. This article provides an overview of the latest research in fetal postmortem micro-CT imaging with a focus on diagnostic accuracy, endovascular staining approaches, placental studies and the reversibility of staining. It also discusses new methods that could prove helpful for micro-CT of larger fetuses. While more research is needed, contrast-enhanced micro-CT has the potential to become a suitable alternative to fetal autopsy. Further research using this novel imaging tool could yield wider applications, such as its practise in imaging rare museum specimens.
Collapse
Affiliation(s)
- Daniël Docter
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Yousif Dawood
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC at University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Karl Jacobs
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
- Department of Oral Pain and Dysfunction, Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Jaco Hagoort
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Roelof-Jan Oostra
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Owen J Arthurs
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- National Institute for Health Research, Great Ormond Street Hospital Biomedical Research Center, London, UK
| | - Bernadette S de Bakker
- Department of Obstetrics and Gynecology, Amsterdam UMC at University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands.
- Department of Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Papazoglou AS, Karagiannidis E, Liatsos A, Bompoti A, Moysidis DV, Arvanitidis C, Tsolaki F, Tsagkaropoulos S, Theocharis S, Tagarakis G, Michaelson JS, Herrmann MD. Volumetric Tissue Imaging of Surgical Tissue Specimens Using Micro-Computed Tomography: An Emerging Digital Pathology Modality for Nondestructive, Slide-Free Microscopy-Clinical Applications of Digital Pathology in 3 Dimensions. Am J Clin Pathol 2023; 159:242-254. [PMID: 36478204 DOI: 10.1093/ajcp/aqac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Micro-computed tomography (micro-CT) is a novel, nondestructive, slide-free digital imaging modality that enables the acquisition of high-resolution, volumetric images of intact surgical tissue specimens. The aim of this systematic mapping review is to provide a comprehensive overview of the available literature on clinical applications of micro-CT tissue imaging and to assess its relevance and readiness for pathology practice. METHODS A computerized literature search was performed in the PubMed, Scopus, Web of Science, and CENTRAL databases. To gain insight into regulatory and financial considerations for performing and examining micro-CT imaging procedures in a clinical setting, additional searches were performed in medical device databases. RESULTS Our search identified 141 scientific articles published between 2000 and 2021 that described clinical applications of micro-CT tissue imaging. The number of relevant publications is progressively increasing, with the specialties of pulmonology, cardiology, otolaryngology, and oncology being most commonly concerned. The included studies were mostly performed in pathology departments. Current micro-CT devices have already been cleared for clinical use, and a Current Procedural Terminology (CPT) code exists for reimbursement of micro-CT imaging procedures. CONCLUSIONS Micro-CT tissue imaging enables accurate volumetric measurements and evaluations of entire surgical specimens at microscopic resolution across a wide range of clinical applications.
Collapse
Affiliation(s)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Liatsos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreana Bompoti
- Diagnostic Imaging, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Peterborough, UK
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Arvanitidis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece.,LifeWatch ERIC, Sector II-II, Seville, Spain
| | - Fani Tsolaki
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, National and Kapoditrian University of Athens, Athens, Greece
| | - Georgios Tagarakis
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | - James S Michaelson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Markus D Herrmann
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Folkerth RD, Crary JF, Shewmon DA. Neuropathologic findings in a young woman 4 years following declaration of brain death: case analysis and literature review. J Neuropathol Exp Neurol 2022; 82:6-20. [PMID: 36519406 PMCID: PMC9764081 DOI: 10.1093/jnen/nlac090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Brain death (death by neurologic criteria) is declared in 2% of all in-hospital deaths in the United States. Published neuropathology studies of individuals maintained on cardiorespiratory support are generally decades old, and notably include only 3 cases with long intervals between brain and "somatic" death (68 days, 101 days, 20 years). Here, we share our observations in a young woman supported for nearly 4½ years following declaration of brain death after oropharyngeal surgery. While limited by tissue availability and condition, we found evidence of at least partial perfusion of the superficial cerebral and cerebellar cortices by external carotid and vertebral arteries (via meningeal and posterior pharyngeal branches), characterized by focal cellular reaction and organization. Dural venous sinuses had thrombosis and recanalization, as well as iron deposition. In nonperfused brain areas, tissue "mummification," akin to that seen in certain postmortem conditions, including macerated stillbirths and saponification (adipocere formation), was identified, and are reviewed herein. Unfortunately, correlation with years-earlier clinical and radiographic observations was not possible. Nevertheless, we feel that our careful neuropathologic inspection of this case expands the understanding of the spectrum of human brain tissue alterations possible in a very rarely seen set of conditions.
Collapse
Affiliation(s)
- Rebecca D Folkerth
- New York City Office of Chief Medical Examiner and New York University Grossman School of Medicine, 520 First Avenue, New York, NY 10016, USA; E-mail: ; ;
| | - John F Crary
- From the New York University Grossman School of Medicine, New York City Office of Chief Medical Examiner, New York, New York, USA (RDF); Departments of Pathology, Neuroscience and Artificial Intelligence & Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA (JFC); and Departments of Pediatrics and Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA (DAS)
| | - D Alan Shewmon
- From the New York University Grossman School of Medicine, New York City Office of Chief Medical Examiner, New York, New York, USA (RDF); Departments of Pathology, Neuroscience and Artificial Intelligence & Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA (JFC); and Departments of Pediatrics and Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA (DAS)
| |
Collapse
|
6
|
Franchetti G, Viel G, Fais P, Fichera G, Cecchin D, Cecchetto G, Giraudo C. Forensic applications of micro-computed tomography: a systematic review. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose
The aim of this systematic review was to provide a comprehensive overview of micro-CT current applications in forensic pathology, anthropology, odontology, and neonatology.
Methods
A bibliographic research on the electronic databases Pubmed and Scopus was conducted in the time frame 01/01/2001–31/12/2021 without any language restrictions and applying the following free-text search strategy: “(micro-computed tomography OR micro-CT) AND (forensic OR legal)”. The following inclusion criteria were used: (A) English language; (B) Application of micro-CT to biological and/or non-biological materials to address at least one forensic issue (e.g., age estimation, identification of post-mortem interval). The papers selected by three independent investigators have been then classified according to the investigated materials.
Results
The bibliographic search provided 651 records, duplicates excluded. After screening for title and/or abstracts, according to criteria A and B, 157 full-text papers were evaluated for eligibility. Ninety-three papers, mostly (64) published between 2017 and 2021, were included; considering that two papers investigated several materials, an overall amount of 99 classifiable items was counted when referring to the materials investigated. It emerged that bones and cartilages (54.55%), followed by teeth (13.13%), were the most frequently analyzed materials. Moreover, micro-CT allowed the collection of structural, qualitative and/or quantitative information also for soft tissues, fetuses, insects, and foreign materials.
Conclusion
Forensic applications of micro-CT progressively increased in the last 5 years with very promising results. According to this evidence, we might expect in the near future a shift of its use from research purposes to clinical forensic cases.
Collapse
|
7
|
Dawood Y, Honhoff C, van der Post A, Roosendaal SD, Coolen BF, Strijkers GJ, Pajkrt E, de Bakker BS. Comparison of postmortem whole-body contrast-enhanced microfocus computed tomography and high-field magnetic resonance imaging of human fetuses. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:109-117. [PMID: 34826157 PMCID: PMC9328149 DOI: 10.1002/uog.24827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Although fetal autopsy is generally recommended to confirm or refute the antemortem diagnosis, parental acceptance of the procedure has fallen over time, mainly due to its invasiveness. Contrast-enhanced microfocus CT (micro-CT) and high-field magnetic resonance imaging (HF-MRI, ≥ 3 Tesla) have both been suggested as non-invasive alternatives to conventional fetal autopsy for fetuses < 20 weeks of gestation. The aim of this study was to compare these two modalities in postmortem whole-body fetal imaging. METHODS In this study, the imaging process and quality of micro-CT and HF-MRI were compared using both qualitative and quantitative assessments. For the qualitative evaluation, fetal anatomy experts scored 56 HF-MRI and 56 micro-CT images of four human fetuses aged 13-18 gestational weeks on two components: overall image quality and the ability to recognize and assess 21 anatomical structures. For the quantitative evaluation, participants segmented manually three organs with increasing complexity to assess interobserver variability. In addition, the signal-to-noise and contrast-to-noise ratios of five major organs were determined. RESULTS Both imaging techniques were able to reach submillimeter voxel size. The highest resolution of micro-CT was 22 µm (isotropic), while the highest resolution of HF-MRI was 137 µm (isotropic). The qualitative image assessment form was sent to 45 fetal anatomy experts, of whom 36 (80%) responded. It was observed that micro-CT scored higher on all components of the qualitative assessment compared with HF-MRI. In addition, the quantitative assessment showed that micro-CT had lower interobserver variability and higher signal-to-noise and contrast-to-noise ratios. CONCLUSIONS Our findings show that micro-CT outperforms HF-MRI in postmortem whole-body fetal imaging in terms of both quantitative and qualitative outcomes. Combined, these findings suggest that the ability to extract diagnostic information is greater when assessing micro-CT compared with HF-MRI images. We, therefore, believe that micro-CT is the preferred imaging modality as an alternative to conventional fetal autopsy for early gestation and is an indispensable tool in postmortem imaging services. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y. Dawood
- Department of Obstetrics and GynecologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical Biology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
| | - C. Honhoff
- Department of Medical Biology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - A.‐S. van der Post
- Department of Radiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. D. Roosendaal
- Department of Radiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - B. F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - G. J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - E. Pajkrt
- Department of Obstetrics and GynecologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
| | - B. S. de Bakker
- Department of Obstetrics and GynecologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical Biology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
- Department of Pediatric Surgery, Erasmus MC – Sophia Children's HospitalUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|