1
|
Fainsod A, Vadigepalli R. Rethinking retinoic acid self-regulation: A signaling robustness network approach. Curr Top Dev Biol 2024; 161:113-141. [PMID: 39870431 DOI: 10.1016/bs.ctdb.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
All-trans retinoic acid (ATRA) signaling is a major pathway regulating numerous differentiation, proliferation, and patterning processes throughout life. ATRA biosynthesis depends on the nutritional availability of vitamin A and other retinoids and carotenoids, while it is sensitive to dietary and environmental toxicants. This nutritional and environmental influence requires a robustness response that constantly fine-tunes the ATRA metabolism to maintain a context-specific, physiological range of signaling levels. The ATRA metabolic and signaling network is characterized by the existence of multiple enzymes, transcription factors, and binding proteins capable of performing the same activity. The partial spatiotemporal expression overlap of these enzymes and proteins yields different network compositions in the cells and tissues where this pathway is active. Genetic polymorphisms affecting the activity of individual network components further impact the network composition variability and the self-regulatory feedback response to ATRA fluctuations. Experiments directly challenging the robustness response uncovered a Pareto optimality in the ATRA network, such that some genetic backgrounds efficiently deal with excess ATRA but are very limited in their robustness response to reduced ATRA and vice versa. We discuss a network-focused framework to describe the robustness response and the Pareto optimality of the ATRA metabolic and signaling network.
Collapse
Affiliation(s)
- Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Edri T, Cohen D, Shabtai Y, Fainsod A. Alcohol induces neural tube defects by reducing retinoic acid signaling and promoting neural plate expansion. Front Cell Dev Biol 2023; 11:1282273. [PMID: 38116205 PMCID: PMC10728305 DOI: 10.3389/fcell.2023.1282273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: Neural tube defects (NTDs) are among the most debilitating and common developmental defects in humans. The induction of NTDs has been attributed to abnormal folic acid (vitamin B9) metabolism, Wnt and BMP signaling, excess retinoic acid (RA), dietary components, environmental factors, and many others. In the present study we show that reduced RA signaling, including alcohol exposure, induces NTDs. Methods: Xenopus embryos were exposed to pharmacological RA biosynthesis inhibitors to study the induction of NTDs. Embryos were treated with DEAB, citral, or ethanol, all of which inhibit the biosynthesis of RA, or injected to overexpress Cyp26a1 to reduce RA. NTD induction was studied using neural plate and notochord markers together with morphological analysis. Expression of the neuroectodermal regulatory network and cell proliferation were analyzed to understand the morphological malformations of the neural plate. Results: Reducing RA signaling levels using retinaldehyde dehydrogenase inhibitors (ethanol, DEAB, and citral) or Cyp26a1-driven degradation efficiently induce NTDs. These NTDs can be rescued by providing precursors of RA. We mapped this RA requirement to early gastrula stages during the induction of neural plate precursors. This reduced RA signaling results in abnormal expression of neural network genes, including the neural plate stem cell maintenance genes, geminin, and foxd4l1.1. This abnormal expression of neural network genes results in increased proliferation of neural precursors giving rise to an expanded neural plate. Conclusion: We show that RA signaling is required for neural tube closure during embryogenesis. RA signaling plays a very early role in the regulation of proliferation and differentiation of the neural plate soon after the induction of neural progenitors during gastrulation. RA signaling disruption leads to the induction of NTDs through the mis regulation of the early neuroectodermal network, leading to increased proliferation resulting in the expansion of the neural plate. Ethanol exposure induces NTDs through this mechanism involving reduced RA levels.
Collapse
Affiliation(s)
| | | | | | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Ma L, Wei X, Ma W, Liu Y, Wang Y, He Y, Jia S, Wang Y, Luo W, Liu D, Huang T, Yan J, Gu H, Bai Y, Yuan Z. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:539-551. [PMID: 35325230 PMCID: PMC9154334 DOI: 10.1093/stcltm/szac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal bifida aperta (SBA) is a congenital malformation with a high incidence. Bone marrow mesenchymal stem cell (BMSC) transplantation has the potential to repair the structure of damaged tissues and restore their functions. This is an optional treatment that can be used as a supplement to surgery in the treatment of SBA. However, the application of BMSCs is limited, as the neuronal differentiation rate of BMSCs is not satisfactory when used in treating severe SBA. Thus, we aimed to assess the effect of neural stem cell (NSC)-derived exosomes on BMSC neuronal differentiation and observe the therapeutic effect in an ex vivo rat SBA embryo model. We found that NSC-derived exosomes increased the neuronal differentiation rate of BMSCs in vitro and in the SBA embryo model ex vivo. Proteomic analysis showed that NSC-derived exosomes were enriched in Netrin1, which positively regulated neuronal differentiation. Netrin1 increased the neuronal differentiation rate of BMSCs and NSCs and upregulated the expression of the neuronal markers, microtubule-associated protein (Map2), neurofilament, and β3-tubulin. Bioinformatic analysis revealed that Netrin1 treatment increased the expression of the transcription factors Hand2 and Phox2b, related to neuronal differentiation. Furthermore, the Netrin1-induced NSC neuronal differentiation was significantly blocked by Phox2b knockdown. We suggest that NSC-derived exosomal Netrin1 induces neuronal differentiation via the Hand2/Phox2b axis by upregulating the expression of Hand2 and Phox2b. Therefore, NSC-derived exosomes are a critical inducer of BMSC neuronal differentiation and represent a potential treatment agent that can benefit BMSC treatment in SBA.
Collapse
Affiliation(s)
- Ling Ma
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xiaowei Wei
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Wei Ma
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yusi Liu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yanfu Wang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yiwen He
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Shanshan Jia
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yu Wang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Wenting Luo
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Dan Liu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Tianchu Huang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Jiayu Yan
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Hui Gu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yuzuo Bai
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Zhengwei Yuan
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Corresponding author: Zhengwei Yuan, Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China. Tel: +86 24 23929903;
| |
Collapse
|
4
|
Parihar M, Bendelac-Kapon L, Gur M, Abbou T, Belorkar A, Achanta S, Kinberg K, Vadigepalli R, Fainsod A. Retinoic Acid Fluctuation Activates an Uneven, Direction-Dependent Network-Wide Robustness Response in Early Embryogenesis. Front Cell Dev Biol 2021; 9:747969. [PMID: 34746144 PMCID: PMC8564372 DOI: 10.3389/fcell.2021.747969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 01/15/2023] Open
Abstract
Robustness is a feature of regulatory pathways to ensure signal consistency in light of environmental changes or genetic polymorphisms. The retinoic acid (RA) pathway, is a central developmental and tissue homeostasis regulatory signal, strongly dependent on nutritional sources of retinoids and affected by environmental chemicals. This pathway is characterized by multiple proteins or enzymes capable of performing each step and their integration into a self-regulating network. We studied RA network robustness by transient physiological RA signaling disturbances followed by kinetic transcriptomic analysis of the recovery during embryogenesis. The RA metabolic network was identified as the main regulated module to achieve signaling robustness using an unbiased pattern analysis. We describe the network-wide responses to RA signal manipulation and found the feedback autoregulation to be sensitive to the direction of the RA perturbation: RA knockdown exhibited an upper response limit, whereas RA addition had a minimal feedback-activation threshold. Surprisingly, our robustness response analysis suggests that the RA metabolic network regulation exhibits a multi-objective optimization, known as Pareto optimization, characterized by trade-offs between competing functionalities. We observe that efficient robustness to increasing RA is accompanied by worsening robustness to reduced RA levels and vice versa. This direction-dependent trade-off in the network-wide feedback response, results in an uneven robustness capacity of the RA network during early embryogenesis, likely a significant contributor to the manifestation of developmental defects.
Collapse
Affiliation(s)
- Madhur Parihar
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Liat Bendelac-Kapon
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Michal Gur
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Tali Abbou
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Abha Belorkar
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sirisha Achanta
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Keren Kinberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Pangilinan F, Finlay EK, Molloy AM, Abaan HO, Shane B, Mills JL, Brody LC, Parle-McDermott A. A dihydrofolate reductase 2 (DHFR2) variant is associated with risk of neural tube defects in an Irish cohort but not in a United Kingdom cohort. Am J Med Genet A 2021; 185:1307-1311. [PMID: 33544972 DOI: 10.1002/ajmg.a.62090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/24/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Faith Pangilinan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Emma K Finlay
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Anne M Molloy
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Hattice O Abaan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Barry Shane
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - James L Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver, National Institute for Child Health and Human Development, Bethesda, Maryland, USA
| | - Lawrence C Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | | |
Collapse
|
6
|
Molloy AM. Should vitamin B 12 status be considered in assessing risk of neural tube defects? Ann N Y Acad Sci 2018; 1414:109-125. [PMID: 29377209 PMCID: PMC5887889 DOI: 10.1111/nyas.13574] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 02/06/2023]
Abstract
There is a strong biological premise for including vitamin B12 with folic acid in strategies to prevent neural tube defects (NTDs), due to the closely interlinked metabolism of these two vitamins. For example, reduction of B12 deficiency among women of reproductive age could enhance the capacity of folic acid to prevent NTDs by optimizing the cellular uptake and utilization of natural folate cofactors. Vitamin B12 might also have an independent role in NTD prevention, such that adding it in fortification programs might be more effective than fortifying with folic acid alone. Globally, there is ample evidence of widespread vitamin B12 deficiency in low‐ and middle‐income countries, but there is also considerable divergence of vitamin B12 status across regions, likely due to genetic as well as nutritional factors. Here, I consider the evidence that low vitamin B12 status may be an independent factor associated with risk of NTDs, and whether a fortification strategy to improve B12 status would help reduce the prevalence of NTDs. I seek to identify knowledge gaps in this respect and specify research goals that would address these gaps.
Collapse
Affiliation(s)
- Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|
7
|
Au KS, Findley TO, Northrup H. Finding the genetic mechanisms of folate deficiency and neural tube defects-Leaving no stone unturned. Am J Med Genet A 2017; 173:3042-3057. [PMID: 28944587 PMCID: PMC5650505 DOI: 10.1002/ajmg.a.38478] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022]
Abstract
Neural tube defects (NTDs) occur secondary to failed closure of the neural tube between the third and fourth weeks of gestation. The worldwide incidence ranges from 0.3 to 200 per 10,000 births with the United States of American NTD incidence at around 3-6.3 per 10,000 dependent on race and socioeconomic background. Human NTD incidence has fallen by 35-50% in North America due to mandatory folic acid fortification of enriched cereal grain products since 1998. The US Food and Drug Administration has approved the folic acid fortification of corn masa flour with the goal to further reduce the incidence of NTDs, especially among individuals who are Hispanic. However, the genetic mechanisms determining who will benefit most from folate enrichment of the diet remains unclear despite volumes of literature published on studies of association of genes with functions related to folate metabolism and risk of human NTDs. The advances in omics technologies provides hypothesis-free tools to interrogate every single gene within the genome of NTD affected individuals to discover pathogenic variants and methylation targets throughout the affected genome. By identifying genes with expression regulated by presence of folate through transcriptome profiling studies, the genetic mechanisms leading to human NTDs due to folate deficiency may begin to be more efficiently revealed.
Collapse
Affiliation(s)
- KS Au
- Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Houston – McGovern Medical School, Houston, TX
| | - TO Findley
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Houston – McGovern Medical School, Houston, TX
| | - H Northrup
- Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Houston – McGovern Medical School, Houston, TX
- Shriners Hospitals for Children - Houston, Houston, TX
| |
Collapse
|
8
|
Abstract
Formate, the only non-tetrahydrofolate (THF)-linked intermediate in one-carbon metabolism, is produced in mammals from a variety of metabolic sources. It occurs in serum of adults at a concentration of approximately 30 μM. Its principal function lies as a source of one-carbon groups for the synthesis of 10-formyl-THF and other one-carbon intermediates; these are primarily used for purine synthesis, thymidylate synthesis, and the provision of methyl groups for synthetic, regulatory, and epigenetic methylation reactions. Although formate is largely produced in mitochondria, these functions mostly occur in the cytoplasm and nucleus. Formate plays a significant role in embryonic development, as evidenced by the effectiveness of formate in the pregnant dam's drinking water on the incidence of neural tube defects in some genetic models. High formate concentrations in fetal lambs may indicate a role in fetal development and suggest that extracellular formate may play a role in the interorgan distribution of one-carbon groups.
Collapse
Affiliation(s)
- Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| |
Collapse
|
9
|
Nutrients in Energy and One-Carbon Metabolism: Learning from Metformin Users. Nutrients 2017; 9:nu9020121. [PMID: 28208582 PMCID: PMC5331552 DOI: 10.3390/nu9020121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Metabolic vulnerability is associated with age-related diseases and concomitant co-morbidities, which include obesity, diabetes, atherosclerosis and cancer. Most of the health problems we face today come from excessive intake of nutrients and drugs mimicking dietary effects and dietary restriction are the most successful manipulations targeting age-related pathways. Phenotypic heterogeneity and individual response to metabolic stressors are closely related food intake. Understanding the complexity of the relationship between dietary provision and metabolic consequences in the long term might provide clinical strategies to improve healthspan. New aspects of metformin activity provide a link to many of the overlapping factors, especially the way in which organismal bioenergetics remodel one-carbon metabolism. Metformin not only inhibits mitochondrial complex 1, modulating the metabolic response to nutrient intake, but also alters one-carbon metabolic pathways. Here, we discuss findings on the mechanism(s) of action of metformin with the potential for therapeutic interpretations.
Collapse
|
10
|
Salehabadi M, Farimani M, Tavilani H, Ghorbani M, Poormonsefi F, Poorolajal J, Shafiei G, Ghasemkhani N, Khodadadi I. Association of G22A and A4223C ADA1 gene polymorphisms and ADA activity with PCOS. Syst Biol Reprod Med 2016; 62:213-22. [DOI: 10.3109/19396368.2016.1143055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Ma W, Wei X, Gu H, Li H, Guan K, Liu D, Chen L, Cao S, An D, Zhang H, Huang T, Miao J, Zhao G, Wu D, Liu B, Wang W, Yuan Z. Sensory neuron differentiation potential of in utero mesenchymal stem cell transplantation in rat fetuses with spina bifida aperta. ACTA ACUST UNITED AC 2015; 103:772-9. [PMID: 26172505 DOI: 10.1002/bdra.23401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/19/2015] [Accepted: 05/27/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND In previous studies, we found that the deficiency of sensory and motor neurons was a primary defect associated with the spinal malformation. Upon prenatal treatment of spina bifida through in utero stem cell transplantation in a retinoic acid-induced spina bifida rat model, we found that the mesenchymal stem cell (MSCs) survived, migrated, and differentiated into cells of a neural lineage. In the present study, we investigated whether the transplanted MSCs had the potential to differentiate into sensory neurons or to protect sensory neurons in the defective spinal cord. METHODS Pregnant rats treated with retinoic acid on embryonic day (E) 10, underwent fetal surgery for MSC transplantation on E16. The fetuses were harvested on E20. Immunofluorescence was used to detect the expression of Brn3a protein in the transplanted MSCs and dorsal root ganglion (DRG) neurons in the defective spinal cords. The expression of the transcription factors Brn3a and Runx1 in spinal cords was analyzed using real-time polymerase chain reaction. RESULTS Some of the transplanted MSCs expressed sensory neuron cell specific phenotypes. The expression of Brn3a and Runx1 was upregulated in the defective spinal cords when compared to controls. The percentage of Brn3a-positive neurons in DRG was also increased after transplantation. CONCLUSION Our results indicate that the transplantation of MSCs into the spinal cord could promote the transplanted MSCs and the surrounding cells to differentiate toward a sensory neuron cell fate and to play an important role in protecting sensory neurons in DRG. This approach might be of value in the treatment of sensory neuron deficiency in spina bifida aperta.
Collapse
Affiliation(s)
- Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Li
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Kaoping Guan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lizhu Chen
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dong An
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Henan Zhang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Tianchu Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jianing Miao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guifeng Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Di Wu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Bo Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|