1
|
Liu J, Bao X, Huang J, Chen R, Tan Y, Zhang Z, Xiao B, Kong F, Gu C, Du J, Wang H, Qi J, Tan J, Ma D, Shi C, Xu G. TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics. Metabolism 2024; 152:155767. [PMID: 38154611 DOI: 10.1016/j.metabol.2023.155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Disturbance in the differentiation process of bone marrow mesenchymal stem cells (BMSCs) leads to osteoporosis. Mitochondrial dynamics plays a pivotal role in the metabolism and differentiation of BMSCs. However, the mechanisms underlying mitochondrial dynamics and their impact on the differentiation equilibrium of BMSCs remain unclear. METHODS We investigated the mitochondrial morphology and markers related to mitochondrial dynamics during BMSCs osteogenic and adipogenic differentiation. Bioinformatics was used to screen potential genes regulating BMSCs differentiation through mitochondrial dynamics. Subsequently, we evaluated the impact of Transmembrane protein 135 (TMEM135) deficiency on bone homeostasis by comparing Tmem135 knockout mice with their littermates. The mechanism of TMEM135 in mitochondrial dynamics and BMSCs differentiation was also investigated in vivo and in vitro. RESULTS Distinct changes in mitochondrial morphology were observed between osteogenic and adipogenic differentiation of BMSCs, manifesting as fission in the late stage of osteogenesis and fusion in adipogenesis. Additionally, we revealed that TMEM135, a modulator of mitochondrial dynamics, played a functional role in regulating the equilibrium between adipogenesis and osteogenesis. The TMEM135 deficiency impaired mitochondrial fission and disrupted crucial mitochondrial energy metabolism during osteogenesis. Tmem135 knockout mice showed osteoporotic phenotype, characterized by reduced osteogenesis and increased adipogenesis. Mechanistically, TMEM135 maintained intracellular calcium ion homeostasis and facilitated the dephosphorylation of dynamic-related protein 1 at Serine 637 in BMSCs. CONCLUSIONS Our findings underscore the significant role of TMEM135 as a modulator in orchestrating the differentiation trajectory of BMSCs and promoting a shift in mitochondrial dynamics toward fission. This ultimately contributes to the osteogenesis process. This work has provided promising biological targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jian Huang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Rukun Chen
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yixuan Tan
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Zheng Zhang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Bing Xiao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Changjiang Gu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jianhang Du
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Haotian Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junqiang Qi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junming Tan
- Department of Orthopedics, The 72nd Army Hospital of the People's Liberation Army, Huzhou 313099, PR China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
2
|
Landowski M, Gogoi P, Ikeda S, Ikeda A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1355379. [PMID: 38576540 PMCID: PMC10993500 DOI: 10.3389/fopht.2024.1355379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Purnima Gogoi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Yan H, Tang W, Wang L, Huang S, Lin H, Gu L, He C, Dai Y, Yang L, Pengcuo C, Qin Z, Meng Q, Guo B, Zhao X. Ambient PM2.5 Components Are Associated With Bone Strength: Evidence From a China Multi-Ethnic Study. J Clin Endocrinol Metab 2023; 109:197-207. [PMID: 37467163 DOI: 10.1210/clinem/dgad425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT The relationship between the components of particulate matter with an aerodynamic diameter of 2.5 or less (PM2.5) and bone strength remains unclear. OBJECTIVE Based on a large-scale epidemiologic survey, we investigated the individual and combined associations of PM2.5 and its components with bone strength. METHODS A total of 65 906 individuals aged 30 to 79 years were derived from the China Multi-Ethnic Cohort Annual average concentrations of PM2.5 and its components were estimated using satellite remote sensing and chemical transport models. Bone strength was expressed by the calcaneus quantitative ultrasound index (QUI) measured by quantitative ultrasound. The logistic regression model and weighted quantile sum method were used to estimate the associations of single and joint exposure to PM2.5 and its components with QUI, respectively. RESULTS Our analysis shows that per-SD increase (μg/m3) in 3-year average concentrations of PM2.5 (mean difference [MD] -7.38; 95% CI, -8.35 to -6.41), black carbon (-7.91; -8.90 to -6.92), ammonium (-8.35; -9.37 to -7.34), nitrate (-8.73; -9.80 to -7.66), organic matter (-4.70; -5.77 to -3.64), and soil particles (-5.12; -6.10 to -4.15) were negatively associated with QUI. In addition, these associations were more pronounced in men, and people older than 65 years with a history of smoking and chronic alcohol consumption. CONCLUSION We found that long-term exposure to PM2.5 and its components may lead to reduced bone strength, suggesting that PM2.5 and its components may potentially increase the risk of osteoporosis and even fracture. Nitrate may be responsible for increasing its risk to a greater extent.
Collapse
Affiliation(s)
- Hongyu Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenge Tang
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shourui Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Lingxi Gu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Congyuan He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingxue Dai
- Infectious Disease Control Department, Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - La Yang
- Plateau Health Science Research Center, Medical School, Tibet University, Lhasa, Tibet 850000, China
| | - Ciren Pengcuo
- Tibet Center for Disease Control and Prevention, Lhasa, Tibet 850002, China
| | - Zixiu Qin
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan 650550, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Jiang Y, Kang Zhuo BM, Guo B, Zeng PB, Guo YM, Chen GB, Wei J, He RF, Li ZF, Zhang XH, Wang ZY, Li X, Wang L, Zeng CM, Chen L, Xiao X, Zhao X. Living near greenness is associated with higher bone strength: A large cross-sectional epidemiological study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:155393. [PMID: 35461937 DOI: 10.1016/j.scitotenv.2022.155393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Living near green spaces may benefit various health outcomes. However, no studies have investigated the greenness-bone linkage in the general population. Moreover, to which extent ambient air pollution (AAP), physical activity (PA), and body mass index (BMI) mediate this relationship remains unclear. We aimed to explore the association between greenness and bone strength and the potential mediating roles of AAP, PA, and BMI in Chinese adults. METHODS This cross-sectional analysis enrolled 66,053 adults from the China Multi-Ethnic Cohort in 2018-2019. The normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) were employed to define residential greenness. The calcaneus quantitative ultrasound index (QUI) was used to indicate bone strength. Multiple linear regression models and mediation analyses were used to estimate the residential greenness-bone strength association and potential pathways operating through AAP (represented by PM2.5 [particulate matter <2.5 μm in diameter]), PA, and BMI. Stratification analyses were performed to identify susceptible populations. RESULTS Higher residential exposure to greenness was significantly associated with an increase in QUI, with changes (95% confidence interval) of 3.28 (3.05, 3.50), 3.57 (3.34, 3.80), 2.68 (2.46, 2.90), and 2.93 (2.71, 3.15) for every interquartile range increase in NDVI500m, NDVI1000m, EVI500m, and EVI1000m, respectively. Sex, urbanicity, annual family income, smoking, and drinking significantly modified the association of greenness-bone strength, with more remarkable associations in males, urban residents, subjects from wealthier families, smokers, and drinkers. For the NDVI500m/EVI500m-QUI relationship, the positive mediating roles of PM2.5 and PA were 6.70%/8.50 and 2.43%/2.69%, respectively, whereas those negative for BMI and PA-BMI were 0.88%/1.06% and 0.05%/0.05%, respectively. CONCLUSION Living in a greener area may predict higher bone strength, particularly among males, urban residents, wealthier people, smokers, and drinkers. AAP, PA, BMI, and other factors may partially mediate the positive association. Our findings underscore the importance of optimizing greenness planning and management policies.
Collapse
Affiliation(s)
- Ye Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bai Ma Kang Zhuo
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei-Bin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Ming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gong-Bo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Rui-Feng He
- Tibet Center for Disease Control and Prevention, Lhasa, Tibet, China
| | - Zhi-Feng Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Xue-Hui Zhang
- School of public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Zi-Yun Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xuan Li
- Jianyang Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Lei Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chun-Mei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiong Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Wu J, Guo B, Guan H, Mi F, Xu J, Basang, Li Y, Zuo H, Wang L, Feng S, Wei J, Chen G, Li S, Wei Y, Guo Y, Zhao X. The Association Between Long-term Exposure to Ambient Air Pollution and Bone Strength in China. J Clin Endocrinol Metab 2021; 106:e5097-e5108. [PMID: 34263315 DOI: 10.1210/clinem/dgab462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 01/01/2023]
Abstract
CONTEXT Evidence regarding the association of long-term exposure to air pollution on bone strength or osteoporosis is rare, especially in highly polluted low- and middle-income countries. Little is known about whether the association between air pollution and bone strength changes at different bone strength distributions. OBJECTIVE Using the baseline data from the China Multi-Ethnic Cohort, we investigated the association between long-term air pollution exposure and bone strength. METHODS We used multiple linear models to estimate the association between air pollution and bone strength, and we conducted quantile regression models to investigate the variation of this association in the distribution of bone strength. The 3-year concentrations of PM1, PM2.5, PM10, and NO2 for each participant were assessed using spatial statistical models. Bone strength was expressed by the calcaneus quantitative ultrasound index (QUI) measured by quantitative ultrasound, with higher QUI values indicating greater bone strength. RESULTS A total of 66 598 participants were included. Our analysis shows that every 10 μg/m3 increase in 3-year average PM1, PM2.5, PM10, and NO2 was associated with -5.38 units (95% CI: -6.17, -4.60), -1.89 units (95% CI: -2.33, -1.44), -0.77 units (95% CI: -1.08, -0.47), and -2.02 units (95% CI: -2.32, -1.71) changes in the QUI, respectively. In addition, populations with higher bone strength may be more susceptible to air pollution. CONCLUSION Long-term exposure to PM1, PM2.5, PM10, and NO2 was significantly associated with decreased bone strength in southwestern China adults. Air pollution exposure has a more substantial adverse effect on bones among populations with higher bone strength.
Collapse
Affiliation(s)
- Jialong Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Han Guan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Fei Mi
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jingru Xu
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Basang
- Tibet University, Lhasa, Tibet 850000, China
- Tibet Center for Disease Control and Prevention, Lhasa, Tibet 850002, China
| | - Yajie Li
- Tibet Center for Disease Control and Prevention, Lhasa, Tibet 850002, China
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Gongbo Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3800, Australia
| | - Yonglan Wei
- Chengdu Center for Disease Control &Prevention, Chengdu, Sichuan 610047, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3800, Australia
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Beasley HK, Rodman TA, Collins GV, Hinton A, Exil V. TMEM135 is a Novel Regulator of Mitochondrial Dynamics and Physiology with Implications for Human Health Conditions. Cells 2021; 10:cells10071750. [PMID: 34359920 PMCID: PMC8303332 DOI: 10.3390/cells10071750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane proteins (TMEMs) are integral proteins that span biological membranes. TMEMs function as cellular membrane gates by modifying their conformation to control the influx and efflux of signals and molecules. TMEMs also reside in and interact with the membranes of various intracellular organelles. Despite much knowledge about the biological importance of TMEMs, their role in metabolic regulation is poorly understood. This review highlights the role of a single TMEM, transmembrane protein 135 (TMEM135). TMEM135 is thought to regulate the balance between mitochondrial fusion and fission and plays a role in regulating lipid droplet formation/tethering, fatty acid metabolism, and peroxisomal function. This review highlights our current understanding of the various roles of TMEM135 in cellular processes, organelle function, calcium dynamics, and metabolism.
Collapse
Affiliation(s)
- Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Taylor A. Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
| | - Greg V. Collins
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; (H.K.B.); (T.A.R.)
- Correspondence: (A.H.J.); (V.E.)
| | - Vernat Exil
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA 52242, USA;
- Department of Pediatrics-Cardiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: (A.H.J.); (V.E.)
| |
Collapse
|
7
|
Franco NR, Massi MC, Ieva F, Manzoni A, Paganoni AM, Zunino P, Veldeman L, Ost P, Fonteyne V, Talbot CJ, Rattay T, Webb A, Johnson K, Lambrecht M, Haustermans K, De Meerleer G, de Ruysscher D, Vanneste B, Van Limbergen E, Choudhury A, Elliott RM, Sperk E, Veldwijk MR, Herskind C, Avuzzi B, Noris Chiorda B, Valdagni R, Azria D, Farcy-Jacquet MP, Brengues M, Rosenstein BS, Stock RG, Vega A, Aguado-Barrera ME, Sosa-Fajardo P, Dunning AM, Fachal L, Kerns SL, Payne D, Chang-Claude J, Seibold P, West CML, Rancati T. Development of a method for generating SNP interaction-aware polygenic risk scores for radiotherapy toxicity. Radiother Oncol 2021; 159:241-248. [PMID: 33838170 PMCID: PMC8754257 DOI: 10.1016/j.radonc.2021.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 03/17/2021] [Indexed: 12/03/2022]
Abstract
AIM To identify the effect of single nucleotide polymorphism (SNP) interactions on the risk of toxicity following radiotherapy (RT) for prostate cancer (PCa) and propose a new method for polygenic risk score incorporating SNP-SNP interactions (PRSi). MATERIALS AND METHODS Analysis included the REQUITE PCa cohort that received external beam RT and was followed for 2 years. Late toxicity endpoints were: rectal bleeding, urinary frequency, haematuria, nocturia, decreased urinary stream. Among 43 literature-identified SNPs, the 30% most strongly associated with each toxicity were tested. SNP-SNP combinations (named SNP-allele sets) seen in ≥10% of the cohort were condensed into risk (RS) and protection (PS) scores, respectively indicating increased or decreased toxicity risk. Performance of RS and PS was evaluated by logistic regression. RS and PS were then combined into a single PRSi evaluated by area under the receiver operating characteristic curve (AUC). RESULTS Among 1,387 analysed patients, toxicity rates were 11.7% (rectal bleeding), 4.0% (urinary frequency), 5.5% (haematuria), 7.8% (nocturia) and 17.1% (decreased urinary stream). RS and PS combined 8 to 15 different SNP-allele sets, depending on the toxicity endpoint. Distributions of PRSi differed significantly in patients with/without toxicity with AUCs ranging from 0.61 to 0.78. PRSi was better than the classical summed PRS, particularly for the urinary frequency, haematuria and decreased urinary stream endpoints. CONCLUSIONS Our method incorporates SNP-SNP interactions when calculating PRS for radiotherapy toxicity. Our approach is better than classical summation in discriminating patients with toxicity and should enable incorporating genetic information to improve normal tissue complication probability models.
Collapse
Affiliation(s)
| | - Michela Carlotta Massi
- MOX, Department of Mathematics, Politecnico di Milano, Italy; CADS-Center for Analysis, Decisions and Society, Human Technopole, Milan, Italy.
| | - Francesca Ieva
- MOX, Department of Mathematics, Politecnico di Milano, Italy; CADS-Center for Analysis, Decisions and Society, Human Technopole, Milan, Italy; CHRP-National Center for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy.
| | - Andrea Manzoni
- MOX, Department of Mathematics, Politecnico di Milano, Italy.
| | - Anna Maria Paganoni
- MOX, Department of Mathematics, Politecnico di Milano, Italy; CADS-Center for Analysis, Decisions and Society, Human Technopole, Milan, Italy; CHRP-National Center for Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy.
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Italy.
| | - Liv Veldeman
- Department of Human Structure and Repair, Ghent University, Belgium; Department of Radiation Oncology, Ghent University Hospital, Belgium.
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Belgium; Department of Radiation Oncology, Ghent University Hospital, Belgium.
| | - Valérie Fonteyne
- Department of Human Structure and Repair, Ghent University, Belgium; Department of Radiation Oncology, Ghent University Hospital, Belgium.
| | - Christopher J Talbot
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, United Kingdom.
| | - Tim Rattay
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, United Kingdom.
| | - Adam Webb
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, United Kingdom.
| | - Kerstie Johnson
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, United Kingdom.
| | - Maarten Lambrecht
- Department of Radiation Oncology, University Hospitals Leuven, Belgium.
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Belgium.
| | - Gert De Meerleer
- Department of Radiation Oncology, University Hospitals Leuven, Belgium.
| | - Dirk de Ruysscher
- Maastricht University Medical Center, the Netherlands; Department of Radiation Oncology (Maastro), GROW Institute for Oncology and Developmental Biology, Maastricht, the Netherlands.
| | - Ben Vanneste
- Department of Radiation Oncology (Maastro), GROW Institute for Oncology and Developmental Biology, Maastricht, the Netherlands.
| | - Evert Van Limbergen
- Maastricht University Medical Center, the Netherlands; Department of Radiation Oncology (Maastro), GROW Institute for Oncology and Developmental Biology, Maastricht, the Netherlands.
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, UK.
| | - Rebecca M Elliott
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, UK.
| | - Elena Sperk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Barbara Avuzzi
- Department of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Barbara Noris Chiorda
- Department of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Riccardo Valdagni
- Department of Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy; Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - David Azria
- Department of Radiation Oncology, University Federation of Radiation Oncology, Montpellier Cancer Institute, Univ Montpellier MUSE, France.
| | - Marie-Pierre Farcy-Jacquet
- Department of Radiation Oncology, University Federation of Radiation Oncology, Institut de Cancérologie du Gard, Nimes, France.
| | - Muriel Brengues
- Department of Radiation Oncology, University Federation of Radiation Oncology, Montpellier Cancer Institute, Univ Montpellier MUSE, France.
| | - Barry S Rosenstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, USA.
| | - Richard G Stock
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, USA.
| | - Ana Vega
- Grupo de Medicina Xenómica (USC), Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Biomedical Network on Rare Diseases (CIBERER), Spain.
| | - Miguel E Aguado-Barrera
- Grupo de Medicina Xenómica (USC), Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain.
| | - Paloma Sosa-Fajardo
- Grupo de Medicina Xenómica (USC), Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Spain; Department of Radiation Oncology, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain.
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Labs, UK.
| | - Laura Fachal
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Labs, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Sarah L Kerns
- Departments of Radiation Oncology and Surgery, University of Rochester Medical Center, Rochester, USA.
| | - Debbie Payne
- Centre for Integrated Genomic Medical Research (CIGMR), University of Manchester, UK.
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Germany.
| | - Petra Seibold
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, UK.
| | - Tiziana Rancati
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
8
|
Mondockova V, Adamkovicova M, Lukacova M, Grosskopf B, Babosova R, Galbavy D, Martiniakova M, Omelka R. The estrogen receptor 1 gene affects bone mineral density and osteoporosis treatment efficiency in Slovak postmenopausal women. BMC MEDICAL GENETICS 2018; 19:174. [PMID: 30241506 PMCID: PMC6150952 DOI: 10.1186/s12881-018-0684-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The study investigated the associations of rs9340799:A > G (XbaI) and rs2234693:T > C (PvuII) polymorphisms in the estrogen receptor 1 gene (ESR1) with femoral neck (BMD-FN) and lumbar spine bone mineral density (BMD-LS), biochemical markers of bone turnover, calcium and phosphate levels, fracture prevalence, and a response to two types of anti-osteoporotic therapy in postmenopausal women from southern Slovakia. METHODS We analysed 343 postmenopausal Slovak women (62.40 ± 0.46 years). The influence of rs9340799 (AA vs. AG + GG) and rs2234693 (TT vs. TC + CC) genotypes on BMD and biochemical markers was evaluated by covariance analysis adjusted for age and BMI. Binary logistic regression was used to evaluate the genotype effect on fracture prevalence. Pharmacogenetic part of the study included women who received a regular therapy of HT (17ß estradiol with progesterone; 1 mg/day for both; N = 76) or SERMs/raloxifene (60 mg/day; N = 64) during 48 months. The genotype-based BMD change was assessed by variance analysis for repeated measurements. RESULTS Women with AA genotype of rs9340799 had higher BMD-FN (+ 0.12 ± 0.57 of T-score) and BMD-LS (+ 0.17 ± 0.08 of T-score) in comparison with AG + GG. The rs2234693 polymorphism did not affect any of the monitored parameters. No effect of any ESR1 polymorphisms was found on fracture prevalence. Both types of anti-osteoporotic therapy had a positive effect on BMD improvement in FN and LS sites. Considering the effect of the ESR1 gene within the HT, the subjects with rs9340799/AA genotype showed worse response than those with GG genotype (- 0.26 ± 0.10 of BMD-FN T-score; - 0.35 ± 0.10 of BMD-LS T-score) and also with AG genotype (- 0.22 ± 0.08 of BMD-LS T-score). The rs2234693/TT genotype responded poorer in BMD-LS in comparison with TC (- 0.22 ± 0.08 of T-score) and CC (- 0.35 ± 0.09 of T-score). The effect of the ESR1 gene on raloxifene therapy was reported only in BMD-LS. Subjects with rs9340799/AA genotype had a - 0.30 ± 0.11 of T-score worse response compared to AG genotype. The rs2234693/TT genotype showed - 0.39 ± 0.11 and - 0.46 ± 0.15 lower T-scores in comparison with TC and CC genotypes, respectively. CONCLUSIONS The rs9340799 polymorphism may contribute to decreased BMD in postmenopausal women from southern Slovakia; however, this is not related to higher fracture prevalence. Concurrently, both polymorphisms affected a response to analysed anti-osteoporotic therapies.
Collapse
Affiliation(s)
- Vladimira Mondockova
- Department of Botany and Genetics, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Maria Adamkovicova
- Department of Botany and Genetics, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Martina Lukacova
- Department of Botany and Genetics, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Birgit Grosskopf
- Institute of Zoology and Anthropology, Georg-August University, Göttingen, Germany.
| | - Ramona Babosova
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | | | - Monika Martiniakova
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Radoslav Omelka
- Department of Botany and Genetics, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| |
Collapse
|