1
|
Ayturk SA, Taskiran OO, Tohma EK, Dincel AS, Demirsoy N, Sepici V. Pharmacogenetics of Response to Bisphosphonate Treatment in Postmenopausal Osteoporosis: A Prospective Study. J Bone Metab 2025; 32:21-30. [PMID: 40098426 PMCID: PMC11960302 DOI: 10.11005/jbm.24.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/25/2024] [Accepted: 01/12/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND This study aims to investigate the effect of genetic polymorphisms of vitamin D receptor (VDR), estrogen receptor 1 (ER1), and Col1a1 on the response to bisphosphonate (BP) therapy in women with postmenopausal osteoporosis (OP). METHODS Twenty-one women with postmenopausal OP who received alendronate, ibandronate, or zoledronic acid for one year were enrolled in this study. Bone mineral density (BMD) at the lumbar spine and femoral neck were assessed by dual energy X-ray absorptiometry at baseline and after 12 months. Serum osteocalcin levels were measured at baseline and after 12 months. Polymorphic sites of the genes encoding ER1, VDR and Col1a1 proteins were amplified by polymerase chain reaction and examined using restriction fragment length polymorphism. Response to BP treatment and change in osteocalcin levels were compared among women with different gene polymorphisms. RESULTS Ratio of responders to treatment regarding improvements in the BMD of lumbar spine and femoral neck was adequate in 76% and 62%, respectively. There was no significant difference in treatment response regarding BMD in either region or change in serum osteocalcin levels among different gene polymorphisms. CONCLUSIONS These findings did not support the potential role of VDR BsmI, Col1a1 Sp1, ER1 PvuII, or XbaI polymorphisms in predicting the response to BP therapy in women with postmenopausal OP. Further investigation with larger prospective studies is required.
Collapse
Affiliation(s)
- Sirin Akbulut Ayturk
- Department of Physical Medicine and Rehabilitation, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul,
Türkiye
| | - Ozden Ozyemisci Taskiran
- Department of Physical Medicine and Rehabilitation, Koç University School of Medicine, İstanbul,
Türkiye
| | - Ebru Koseoglu Tohma
- Department of Physical Medicine and Rehabilitation, Muğla Training and Research Hospital, Muğla,
Türkiye
| | - Aylin Sepici Dincel
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara,
Türkiye
| | - Nesrin Demirsoy
- Department of Physical Medicine and Rehabilitation, Gazi University Faculty of Medicine, Ankara,
Türkiye
| | - Vesile Sepici
- Department of Physical Medicine and Rehabilitation, Gazi University Faculty of Medicine, Ankara,
Türkiye
| |
Collapse
|
2
|
Tomczyk-Warunek A, Winiarska-Mieczan A, Blicharski T, Blicharski R, Kowal F, Pano IT, Tomaszewska E, Muszyński S. Consumption of Phytoestrogens Affects Bone Health by Regulating Estrogen Metabolism. J Nutr 2024; 154:2611-2627. [PMID: 38825042 DOI: 10.1016/j.tjnut.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoporosis is a significant concern in bone health, and understanding its pathomechanism is crucial for developing effective prevention and treatment strategies. This article delves into the relationship between estrogen metabolism and bone mineralization, shedding light on how phytoestrogens can influence this intricate process. Estrogen, a hormone primarily associated with reproductive health, plays a pivotal role in maintaining bone density and structure. The article explores the positive effects of estrogen on bone mineralization, highlighting its importance in preventing conditions like osteoporosis. Phytoestrogens, naturally occurring compounds found in certain plant-based foods, are the focal point of the discussion. These compounds have the remarkable ability to mimic estrogen's actions in the body. The article investigates how phytoestrogens can modulate the activity of estrogen, thereby impacting bone health. Furthermore, the article explores the direct effects of phytoestrogens on bone mineralization and structure. By regulating estrogen metabolism, phytoestrogens can contribute to enhanced bone density and reduced risk of osteoporosis. Finally, the article emphasizes the role of plant-based diets as a source of phytoestrogens. By incorporating foods rich in phytoestrogens into one's diet, individuals may potentially bolster their bone health, adding a valuable dimension to the ongoing discourse on osteoporosis prevention. In conclusion, this article offers a comprehensive overview of 137 positions of literature on the intricate interplay between phytoestrogens, estrogen metabolism, and bone health, shedding light on their potential significance in preventing osteoporosis and promoting overall well-being.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Department of Rehabilitation and Physiotherapy, Laboratory of Locomotor Systems Research, Medical University of Lublin, Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Lublin, Poland.
| | - Tomasz Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Rudolf Blicharski
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Filip Kowal
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Inés Torné Pano
- Department of Orthopedics and Rehabilitation, Medical University of Lublin, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
3
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
4
|
Bajpai AK, Gu Q, Jiao Y, Starlard-Davenport A, Gu W, Quarles LD, Xiao Z, Lu L. Systems genetics and bioinformatics analyses using ESR1-correlated genes identify potential candidates underlying female bone development. Genomics 2024; 116:110769. [PMID: 38141931 PMCID: PMC10811775 DOI: 10.1016/j.ygeno.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Estrogen receptor α (ESR1) is involved in E2 signaling and plays a major role in postmenopausal bone loss. However, the molecular network underlying ESR1 has not been explored. We used systems genetics and bioinformatics to identify important genes associated with Esr1 in postmenopausal bone loss. We identified ~2300 Esr1-coexpressed genes in female BXD bone femur, functional analysis of which revealed 'osteoblast signaling' as the most enriched pathway. PPI network led to the identification of 25 'female bone candidates'. The gene-regulatory analysis revealed RUNX2 as a key TF. ANKRD1 and RUNX2 were significantly different between osteoporosis patients and healthy controls. Sp7, Col1a1 and Pth1r correlated with multiple femur bone phenotypes in BXD mice. miR-3121-3p targeted Csf1, Ankrd1, Sp7 and Runx2. β-estradiol treatment markedly increased the expression of these candidates in mouse osteoblast. Our study revealed that Esr1-correlated genes Ankrd1, Runx2, Csf1 and Sp7 may play important roles in female bone development.
Collapse
Affiliation(s)
- Akhilesh K Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Yan Jiao
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
5
|
Wu J, Chen J, Yu X, You Y. The potential pharmacological mechanism of prunetin against osteoporosis: transcriptome analysis, molecular docking, and experimental approaches. Toxicol Mech Methods 2024; 34:46-56. [PMID: 37642288 DOI: 10.1080/15376516.2023.2253305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Prunetin is an O-methylated isoflavone, known for its beneficial properties. However, its specific pharmacological effects in the treatment of osteoporosis (OP) remain poorly understood. This study aims to elucidate the mechanisms underlying the antiosteoporotic effects of prunetin through a combination of bioinformatics analysis and cell experiments. METHODS We gathered predicted targets of prunetin from various online platforms. Differential expression analysis of mRNAs in patients with OP was conducted using the Limma package, based on the GSE35959 dataset. A PPI network diagram was visualized and analyzed using Cytoscape 3.7.2 software. Molecular docking was employed to assess the binding affinity between ligands and receptors, and selected key genes were further validated through cell experiments. RESULTS A total of 4062 differentially expressed genes (DEGs) were identified from the GSE35959 dataset. Among these, 58 genes were found to overlap with the targets of prunetin, indicating their potential as therapeutic targets. The enrichment analysis indicated these targets were mainly enriched in MAPK, FoxO, and mTOR signaling pathways. The molecular docking analysis demonstrated that prunetin exhibited strong binding activity with the core targets. Furthermore, cell experiments revealed that prunetin effectively reversed the expression levels of ALB, ESR1, PTGS2, and FGFR1 mRNA in MC3T3-E1 cells treated with dexamethasone (DEX). CONCLUSION Our research revealed the multi-pathway and multi-target features of prunetin in treating OP, shedding light on the potential mechanisms underlying the effectiveness of prunetin against OP. These findings serve as a theoretical foundation for future drug development in this field.
Collapse
Affiliation(s)
- Jing Wu
- Department of Acupuncture, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Jiangxi Province, P.R. China
| | - Jiali Chen
- Nursing Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi Province, P.R. China
| | - Xijing Yu
- Department of Acupuncture, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Jiangxi Province, P.R. China
| | - Yujuan You
- Department of Anesthesia and Perioperative Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, P.R. China
| |
Collapse
|
6
|
Ma J, Hou D, Wang W, Liu T. Minor allele of rs11655237 in linc-00673 improves bone mineral density and decreases the risk of osteoporosis. Asian J Surg 2023; 46:5122-5123. [PMID: 37479656 DOI: 10.1016/j.asjsur.2023.06.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023] Open
Affiliation(s)
- Jianpeng Ma
- Department of Magnetic Resonance Imaging, Dingbian County People's Hospital, Dingbian, Yulin, Shaanxi, 718600, China
| | - Dongmei Hou
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226019, China
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
7
|
Villagómez Vega A, Gámez Nava JI, Ruiz González F, Pérez Romero M, Trujillo Rangel WÁ, Nuño Arana I. Influence of the Osteogenomic Profile in Response to Alendronate Therapy in Postmenopausal Women with Osteoporosis: A Retrospective Cohort Study. Genes (Basel) 2023; 14:524. [PMID: 36833451 PMCID: PMC9956997 DOI: 10.3390/genes14020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis is a multifactorial disease. Genetic factors play an essential role in contributing to bone mineral density (BMD) variability, which ranges from 60 to 85%. Alendronate is used as the first line of pharmacological treatment for osteoporosis; however, some patients do not respond adequately to therapy with alendronate. AIM The aim of this work was to investigate the influence of combinations of potential risk alleles (genetic profiles) associated with response to anti-osteoporotic treatment in postmenopausal women with primary osteoporosis. METHODS A total of 82 postmenopausal women with primary osteoporosis receiving alendronate (70 mg administered orally per week) for one year were observed. The bone mineral density (BMD; g/cm2) of the femoral neck and lumbar spine was measured. According to BMD change, patients were divided into two groups: responders and non-responders to alendronate therapy. Polymorphic variants in CYP19, ESR1, IL-6, PTHR1, TGFβ, OPG and RANKL genes were determined and profiles were generated from the combination of risk alleles. RESULTS A total of 56 subjects were responders to alendronate and 26 subjects were non-responders. Carriers of the G-C-G-C profile (constructed from rs700518, rs1800795, rs2073618 and rs3102735) were predisposed to response to alendronate treatment (p = 0.001). CONCLUSIONS Our findings highlight the importance of the identified profiles for the pharmacogenetics of alendronate therapy in osteoporosis.
Collapse
Affiliation(s)
- Alejandra Villagómez Vega
- Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44280, Mexico
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara 45425, Mexico
| | - Jorge Iván Gámez Nava
- Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44280, Mexico
- Doctorado en Salud Pública, Departamento de Salud Pública, Centro Universitario de Ciencias de la Salud, Guadalajara 44280, Mexico
| | - Francisco Ruiz González
- Clínica de Osteoporosis del Antiguo Hospital Civil “Fray Antonio Alcalde”, División de Medicina Interna, Guadalajara 44280, Mexico
| | - Misael Pérez Romero
- Clínica de Osteoporosis del Antiguo Hospital Civil “Fray Antonio Alcalde”, División de Medicina Interna, Guadalajara 44280, Mexico
| | - Walter Ángel Trujillo Rangel
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara 45425, Mexico
| | - Ismael Nuño Arana
- Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44280, Mexico
- Centro de Investigación Multidisciplinario en Salud, Departamento de Salud y Enfermedad, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara 45425, Mexico
| |
Collapse
|
8
|
Mondockova V, Kovacova V, Zemanova N, Babikova M, Martiniakova M, Galbavy D, Omelka R. Vitamin D Receptor Gene Polymorphisms Affect Osteoporosis-Related Traits and Response to Antiresorptive Therapy. Genes (Basel) 2023; 14:genes14010193. [PMID: 36672934 PMCID: PMC9858724 DOI: 10.3390/genes14010193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The present study analyzed the effect of vitamin D receptor (VDR) gene polymorphisms (ApaI, TaqI, BsmI, FokI, and Cdx2) on bone mineral density (BMD), biochemical parameters and bone turnover markers, fracture prevalence, and response to three types of antiresorptive therapy (estrogen-progesterone, raloxifene, and ibandronate) in 356 postmenopausal women from Slovakia. Association analysis revealed a significant effect of BsmI polymorphism on lumbar spine BMD, serum osteocalcin (OC), and β-CrossLaps levels. While ApaI and Cdx2 polymorphisms were associated with OC and alkaline phosphatase, TaqI polymorphism affected all turnover markers. ApaI, TaqI, and BsmI genotypes increased the risk of spinal, radial, or total fractures with odds ratios ranging from 2.03 to 3.17. Each of therapy types evaluated had a beneficial effect on all osteoporosis-related traits; however, the VDR gene affected only ibandronate and raloxifene treatment. ApaI/aa, TaqI/TT, and BsmI/bb genotypes showed a weaker or no response to ibandronate therapy in femoral and spinal BMD. The impact of aforementioned polymorphisms on turnover markers was also genotype dependent. On the contrary, only TaqI and BsmI polymorphisms influenced raloxifene therapy, even only in lumbar spine BMD. These results point to the potential of using the VDR gene in personalized pharmacotherapy of osteoporosis.
Collapse
Affiliation(s)
- Vladimira Mondockova
- Department of Botany and Genetics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | | | - Radoslav Omelka
- Department of Botany and Genetics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
- Correspondence: ; Tel.: +421-376408737
| |
Collapse
|
9
|
Deng Y, Wang Y, Shi Q, Jiang Y. Identification of hub genes associated with osteoporosis development by comprehensive bioinformatics analysis. Front Genet 2023; 14:1028681. [PMID: 36911390 PMCID: PMC9999471 DOI: 10.3389/fgene.2023.1028681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/05/2023] [Indexed: 02/25/2023] Open
Abstract
Osteoporosis (OP) is a systemic bone disease caused by various factors, including, the decrease of bone density and quality, the destruction of bone microstructure, and the increase of bone fragility. It is a disease with a high incidence in a large proportion of the world's elderly population. However, osteoporosis lacks obvious symptoms and sensitive biomarkers. Therefore, it is extremely urgent to discover and identify disease-related biomarkers for early clinical diagnosis and effective intervention for osteoporosis. In our study, the Linear Models for Microarray Data (LIMMA) tool was used to screen differential expressed genes from transcriptome sequencing data of OP blood samples downloaded from the GEO database, and cluster Profiler was used for enriching analysis of differently expressed genes. In order to analyzed the relevance of gene modules, clinical symptoms, and the most related module setting genes associated with disease progression, we adapted Weighted Gene Co-expression Network Analysis (WGCNA) to screen and analyze the related pathways and relevant molecules. We used the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database to construct protein interaction network of key modules, and Cytoscape software was used to complete network visualization and screen of core genes in the network. Various plug-in algorithms of cytoHubba were used to identify key genes of OP. Finally, correlation analysis and single-gene gene probe concentration analysis (GSEA) analysis were performed for each core gene. Results of a total of 8 key genes that were closely related to the occurrence and development of OP were screened out, which provided a brand-new idea for the clinical diagnosis and early prevention of OP. Quantitative real-time PCR (qRT-PCR) was performed for validation, the expression levels of CUL1, PTEN and STAT1 genes in the OS group were significantly higher than in the non-OS groups. Receiver operating characteristic analysis demonstrated that CUL1, PTEN and STAT1 displayed considerable diagnostic accuracy for OS.
Collapse
Affiliation(s)
- Yuxuan Deng
- Department of Endocrinology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunyun Wang
- Academic Affairs Office, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Shi
- Department of Endocrinology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanxia Jiang
- Department of Endocrinology, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Effects of Metformin on Bone Mineral Density and Adiposity-Associated Pathways in Animal Models with Type 2 Diabetes Mellitus: A Systematic Review. J Clin Med 2022; 11:jcm11144193. [PMID: 35887957 PMCID: PMC9323116 DOI: 10.3390/jcm11144193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, there have been investigations on metformin (Met) as a potential treatment for bone diseases such as osteoporosis, as researchers have outlined that type 2 diabetes mellitus (T2DM) poses an increased risk of fractures. Hence, this systematic review was conducted according to the 2020 PRISMA guidelines to evaluate the evidence that supports the bone-protective effects of metformin on male animal models with T2DM. Five databases—Google Scholar, PubMed, Wiley Online Library, SCOPUS, and ScienceDirect—were used to search for original randomized controlled trials published in English with relevant keywords. The search identified 18 articles that matched the inclusion criteria and illustrated the effects of Met on bone. This study demonstrates that Met improved bone density and reduced the effects of T2DM on adiposity formation in the animal models. Further research is needed to pinpoint the optimal dosage of Met required to exhibit these therapeutic effects.
Collapse
|
11
|
García-Rojas MD, Palma-Cordero G, Martínez-Ramírez CO, Ponce de León-Suárez V, Valdés-Flores M, Castro-Hernández C, Rubio-Lightbourn J, Hernández-Zamora E, Reyes-Maldonado E, Velázquez-Cruz R, Barredo-Prieto B, Casas-Avila L. Association of Polymorphisms in Estrogen Receptor Genes ( ESR1 and ESR2) with Osteoporosis and Fracture-Involvement of Comorbidities and Epistasis. DNA Cell Biol 2022; 41:437-446. [PMID: 35285722 DOI: 10.1089/dna.2021.1165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in the ESR1/ESR2 genes play a role in osteoporosis (OP). Our objective was to determine associations of polymorphisms in ESR genes with OP and fracture, SNP-SNP interactions, and involvement of comorbidities. We analyzed 170 Mexican osteoporotic women (FNOP), 173 with hip fracture (HFx), and 210 controls. The SNPs, ESR1 rs2234693CC, rs851982CC and rs1999805AA, were associated with reduced OP risk (odds ratios [ORs] = 0.35, 0.40 and 0.32, respectively; p < 0.05); rs2234693CC was associated with reduced fracture risk (OR = 0.24; p < 0.05). The obese/overweight carriers of rs9340799GG had a lower OP (OR = 0.15, p = 0.016) and fracture (OR = 0.12, p = 0.0057) risk. The rs9479055AA and rs3020404AA hypertensive carriers had a higher OP risk (OR = 5.96, p = 0.032; and OR = 5.29, p = 0.02, respectively). In addition, rs3020404AA had a higher risk of fracture (OR = 4.90, p = 0.045). The rs2228480GG hypertensive carriers had a higher risk of fracture (OR = 6.22, p = 0.0038). We found a synergic relation between the ESR1 rs3020331 and rs1999805 in femoral neck OP and HFx. The rs2234693 (PvuII) and rs9340799 (XbaI) polymorphisms are associated with a high risk forming a haplotype. The epistasis analysis suggests the contribution of both genes (ESR1/ESR2) to the risk of OP and fracture. Epistasis and involvement of obesity and hypertension lead to a significant modification of the risk.
Collapse
Affiliation(s)
| | - Grecia Palma-Cordero
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | | | - Margarita Valdés-Flores
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Clementina Castro-Hernández
- Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Julieta Rubio-Lightbourn
- Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Edgar Hernández-Zamora
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Elba Reyes-Maldonado
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Blanca Barredo-Prieto
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Leonora Casas-Avila
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| |
Collapse
|
12
|
Ou L, Kang W, Liang Z, Gao F, Dong T, Wei P, Li M. Investigation of anti-osteoporosis mechanisms of Rehmanniae Radix Preparata based on network pharmacology and experimental verification. J Orthop Surg Res 2021; 16:599. [PMID: 34649566 PMCID: PMC8515747 DOI: 10.1186/s13018-021-02751-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Background Rehmanniae Radix Preparata (RRP) can effectively improve the symptoms of osteoporosis, but its molecular mechanism for treating osteoporosis is still unclear. The objective of this study is to investigate the anti-osteoporosis mechanisms of RRP through network pharmacology. Methods The overlapping targets of RRP and osteoporosis were screened out using online platforms. A visual network diagram of PPI was constructed and analyzed by Cytoscape 3.7.2 software. Molecular docking was used to evaluate the binding activity of ligands and receptors, and some key genes were verified through pharmacological experiments. Results According to topological analysis results, AKT1, MAPK1, ESR1, and SRC are critical genes for RRP to treat osteoporosis, and they have high binding activity with stigmasterol and sitosterol. The main signal pathways of RRP in the treatment of osteoporosis, including the estrogen signaling pathway, HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway. Results of animal experiments showed that RRP could significantly increase the expression levels of Akt1, MAPK1, ESR1, and SRC1 mRNA in bone tissue to increase bone density. Conclusion This study explained the coordination between multiple components and multiple targets of RRP in the treatment of osteoporosis and provided new ideas for its clinical application and experimental research.
Collapse
Affiliation(s)
- Li Ou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Wenqian Kang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ziyi Liang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Taiwei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|
13
|
Analysis of Molecular Mechanism of Erxian Decoction in Treating Osteoporosis Based on Formula Optimization Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6641838. [PMID: 34239693 PMCID: PMC8238601 DOI: 10.1155/2021/6641838] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Osteoporosis (OP) is a highly prevalent orthopedic condition in postmenopausal women and the elderly. Currently, OP treatments mainly include bisphosphonates, receptor activator of nuclear factor kappa-B ligand (RANKL) antibody therapy, selective estrogen receptor modulators, teriparatide (PTH1-34), and menopausal hormone therapy. However, increasing evidence has indicated these treatments may exert serious side effects. In recent years, Traditional Chinese Medicine (TCM) has become popular for treating orthopedic disorders. Erxian Decoction (EXD) is widely used for the clinical treatment of OP, but its underlying molecular mechanisms are unclear thanks to its multiple components and multiple target features. In this research, we designed a network pharmacology method, which used a novel node importance calculation model to identify critical response networks (CRNs) and effective proteins. Based on these proteins, a target coverage contribution (TCC) model was designed to infer a core active component group (CACG). This approach decoded the mechanisms underpinning EXD's role in OP therapy. Our data indicated that the drug response network mediated by the CACG effectively retained information of the component-target (C-T) network of pathogenic genes. Functional pathway enrichment analysis showed that EXD exerted therapeutic effects toward OP by targeting PI3K-Akt signaling (hsa04151), calcium signaling (hsa04020), apoptosis (hsa04210), estrogen signaling (hsa04915), and osteoclast differentiation (hsa04380) via JNK, AKT, and ERK. Our method furnishes a feasible methodological strategy for formula optimization and mechanism analysis and also supplies a reference scheme for the secondary development of the TCM formula.
Collapse
|
14
|
Chen X, Liu G, Wang S, Zhang H, Xue P. Machine learning analysis of gene expression profile reveals a novel diagnostic signature for osteoporosis. J Orthop Surg Res 2021; 16:189. [PMID: 33722258 PMCID: PMC7958453 DOI: 10.1186/s13018-021-02329-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/01/2021] [Indexed: 01/25/2023] Open
Abstract
Background Osteoporosis (OP) is increasingly prevalent with the aging of the world population. It is urgent to identify efficient diagnostic signatures for the clinical application. Method We downloaded the mRNA profile of 90 peripheral blood samples with or without OP from GEO database (Number: GSE152073). Weighted gene co-expression network analysis (WGCNA) was used to reveal the correlation among genes in all samples. GO term and KEGG pathway enrichment analysis was performed via the clusterProfiler R package. STRING database was applied to screen the interaction pairs among proteins. Protein–protein interaction (PPI) network was visualized based on Cytoscape, and the key genes were screened using the cytoHubba plug-in. The diagnostic model based on these key genes was constructed, and 5-fold cross validation method was applied to evaluate its reliability. Results A gene module consisted of 176 genes predicted to be associated with the occurrence of OP was identified. A total of 16 significantly enriched GO terms and 1 significantly enriched KEGG pathway were obtained based on the 176 genes. The top 50 key genes in the PPI network were identified. Then 22 genes were screened based on stepwise regression analysis from the 50 key genes. Of which, 9 genes were further screened out by multivariate regression analysis with the significant threshold of P value < 0.01. The diagnostic model was established based on the optimal 9 key genes, which efficiently separated the normal samples and OP samples. Conclusion A diagnostic model established based on nine key genes could reliably separate OP patients from healthy subjects, which provided novel lightings on the diagnostic research of OP. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02329-1.
Collapse
Affiliation(s)
- Xinlei Chen
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Guangping Liu
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Shuxiang Wang
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Haiyang Zhang
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, Shandong, China
| | - Peng Xue
- Department of Orthopedics, Zibo Central Hospital, Zibo, 255000, Shandong, China.
| |
Collapse
|
15
|
Hassan NE, El Shebini SM, El-Masry SA, Ahmed NH, Eldeen GN, Rasheed EA, Aly MM, Alian KM, Afify MAS, Khalil A. Association of some dietary ingredients, vitamin D, estrogen, and obesity polymorphic receptor genes with bone mineral density in a sample of obese Egyptian women. J Genet Eng Biotechnol 2021; 19:28. [PMID: 33559788 PMCID: PMC7873164 DOI: 10.1186/s43141-021-00127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/26/2021] [Indexed: 11/23/2022]
Abstract
Background Although many environmental factors play an important role in bone mass density (BMD) variation, genetic influences account for 60–85% of individual variance. The aim of this study was to find the interaction between some dietary ingredients, vitamin D, estrogen, and obesity polymorphic receptor genes, among a sample of obese Egyptian women. This was a cross sectional study included 97 women (aged 25–60 years). Data on anthropometry, dietary intake, BMD, biochemical, and genetic analyses were collected. Results Osteoporosis was high among women had dominant Taq1 vitamin D receptor gene while osteoporosis was less common among the homozygous Apa1 receptor gene women. Both genes in their two forms did not show any effect on serum vitamin D. Heterozygous types of osteoporotic women carried both genes revealed a slight but significant decrease in level of serum calcium. Xba1 estrogen receptor gene was identified only in a homozygous type while the heterozygous Pvu11 estrogen receptors gene has been identified among both osteoporotic and non-osteoporotic women, this gene was associated with higher BMI in both groups compared to the homozygous receptor gene. Mutant types of genotype FTOrs99 and FTOrs80 obesity receptors genes were less common (4.44%, 11%) among participants. Both of these genes were associated with the highest value of BMI and caloric daily intake, fat, and saturated fatty acid that were more prominent among osteoporotic women. Conclusion There is significant association between vitamin D, estrogen, obesity receptors genes, special nutrients, and osteoporosis. Increased BMI, calories, and fat intake lead to rise of genetic predisposition and susceptibility to osteoporosis.
Collapse
Affiliation(s)
- Nayera E Hassan
- Biological Anthropology Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Salwa M El Shebini
- Nutrition and Food ScienceDepartment, National Research Centre, Giza, Egypt
| | - Sahar A El-Masry
- Biological Anthropology Department, Medical Research Division, National Research Centre, Giza, Egypt.
| | - Nihad H Ahmed
- Nutrition and Food ScienceDepartment, National Research Centre, Giza, Egypt
| | - Ghada Nour Eldeen
- Molecular Genetics and Enzymology Department, National Research Centre, Giza, Egypt
| | - Enas A Rasheed
- Clinical and Chemical Pathology Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Manal M Aly
- Biological Anthropology Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Khhadija M Alian
- Biological Anthropology Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Mahmoud A S Afify
- Biological Anthropology Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - Aya Khalil
- Biological Anthropology Department, Medical Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
16
|
Shu J, Li J, Fu Y, Hui X, Jin Y, Chen M, Zheng X, Shi Y. Association of ESR1 polymorphism rs2234693 and rs9340799 with postmenopausal osteoporosis in a Chinese population. BMC Musculoskelet Disord 2020; 21:346. [PMID: 32493284 PMCID: PMC7271450 DOI: 10.1186/s12891-020-03359-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/20/2020] [Indexed: 12/02/2022] Open
Abstract
Background Postmenopausal osteoporosis (PMO) is the most common type of primary osteoporosis. ESR1 polymorphism rs2234693 and rs9340799 has been widely studied as a candidate gene associated with PMO, however, the findings were inconclusive. The present study aims to explore the relationship of ESR1 polymorphism rs2234693 and rs9340799 with PMO risk in a Chinese Han population. Methods PMO patients and healthy controls were recruited from gynecology department. DNA of all participants were extracted from the peripheral blood samples and genotyped by Mass Array method. A meta-analysis of case control studies was also conducted to further elucidate the relationship of polymorphism with PMO. Results Our results revealed that there were no associations of rs2234693 with PMO. However, GG genotype of rs9340799 was associated with a higher risk of PMO (OR = 1.51, 95%CI:1.08–4.34, p = 0.03), even adjusting for risk factors (OR = 1.83, 95%CI: 1.12–5.04, p = 0.04). Logistic regression analysis showed that dominant model was associated with a higher risk of PMO (OR = 2.07, 95%CI: 1.02–5.16, p = 0.02) after correcting the risk factors (OR = 2.14, 95%CI:1.12–5.64, p = 0.04); In addition, the Meta-analysis results revealed that both two polymorphisms were not associated with PMO. Conclusions In conclusion, ESR1 polymorphism rs9340799 was associated with PMO. However, well designed studies with larger sample sizes are required to further elucidate the associations.
Collapse
|
17
|
Pharmacogenomics Study for Raloxifene in Postmenopausal Female with Osteoporosis. DISEASE MARKERS 2020; 2020:8855423. [PMID: 32934756 PMCID: PMC7479487 DOI: 10.1155/2020/8855423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 08/07/2020] [Indexed: 01/16/2023]
Abstract
Osteoporosis is characterized by decreased bone mineral density and increased risk of fracture. Raloxifene is one of the treatments of osteoporosis. However, the responses were variable among patients. Previous studies revealed that the genetic variants are involved in the regulation of treatment outcomes. To date, studies that evaluate the influence of genes across all genome on the raloxifene treatment response are still limited. In this study, a total of 41 postmenopausal osteoporosis patients under regular raloxifene treatment were included. Gene-based analysis using MAGMA was applied to investigate the genetic association with the bone mineral density response to raloxifene at the lumbar spine or femoral neck site. Results from gene-based analysis indicated several genes (GHRHR, ABHD8, and TMPRSS6) related to the responses of raloxifene. Besides, the pathways of iron ion homeostasis, osteoblast differentiation, and platelet morphogenesis were enriched which implies that these pathways might be relatively susceptible to raloxifene treatment outcome. Our study provided a novel insight into the response to raloxifene.
Collapse
|
18
|
Capcarova M, Harangozo L, Arvay J, Toth T, Gabriny L, Binkowski LJ, Palsova L, Skalicka M, Pardo MDLLG, Stawarz R, Massanyi P. Essential and xenobiotic elements in cottage cheese from the Slovak market with a consumer risk assessment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:677-686. [PMID: 32378984 DOI: 10.1080/03601234.2020.1762420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The examination of various elements in the milk products is very important in the food sector in respect of food quality and safety. The aim of this study was to determine the concentrations of calcium (Ca), cobalt (Co), cadmium (Cd), copper (Cu), chromium (Cr), iron (Fe), mercury (Hg), potassium (K), magnesium (Mg), sodium (Na), nickel (Ni), phosphorus (P), lead (Pb) and zinc (Zn) in white cottage cheese or cottage cheese supplemented with various additives (white, lacto-free, chive, tzatziki, mustard + onion, chili, active protein) available on the market of Slovakia. All essential elements were within the reference range. Cottage cheese enriched with tzatziki showed higher amount of Cu, Fe, K, and Zn. Mustard + onion cheese contained high values of Ca, Co, Mg, and Ni. In white cottage cheese high amount of Cr, Mn, and P was measured. The content of xenobiotic metals was below permitted limit. The contribution to PTWI (Provisional tolerable weekly intake) suggested very low dietary exposure to heavy metals as Cd, Hg, and Pb as well as other metals (Cu, Ni, and Zn) in cottage cheese. Numerous correlations between concentrations were observed. MOE (Margin of Exposure) evaluation denoted that average consumption of cottage cheese does not pose any high cardiovascular and nephrotoxicity threat.
Collapse
Affiliation(s)
- Marcela Capcarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Lubos Harangozo
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Julius Arvay
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Tomas Toth
- Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Lucia Gabriny
- AgroBioTech, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | | | - Lucia Palsova
- Department of Law, Faculty of European Studies and Regional Development, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Magdalena Skalicka
- Institute of Nutrition, Dietetics and Feed Production, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | | | - Robert Stawarz
- Institute of Biology, Pedagogical University of Krakow, Krakow, Poland
| | - Peter Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
19
|
Omori MA, Gerber JT, Marañón-Vásquez GA, Matsumoto MAN, Weiss SG, do Nascimento MA, Araújo MTDS, Stuani MBS, Nelson-Filho P, Scariot R, Küchler EC. Possible association between craniofacial dimensions and genetic markers in ESR1 and ESR2. J Orthod 2020; 47:65-71. [PMID: 32000574 DOI: 10.1177/1465312520901725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To investigate the association of genetic markers in ESR1 and ESR2 with craniofacial measurements. DESIGN Cross-sectional study. SETTING School of Dentistry of Ribeirão Preto, University of São Paulo. PARTICIPANTS A total of 146 biologically unrelated, self-reported Caucasian Brazilians with no syndromic conditions were included. METHODS Sagittal and vertical measurements (ANB, S-N, Ptm'-A', Co-Gn, Go-Pg, N-Me, ANS-Me, S-Go and Co-Go) from lateral cephalograms were examined for craniofacial evaluation. DNA was extracted from saliva and genetic markers in ESR1 (rs2234693 and rs9340799) and in ESR2 (rs1256049 and rs4986938) were analysed by real-time polymerase chain reaction. Hardy-Weinberg equilibrium was evaluated using the Chi-square test within each marker. The associations between craniofacial dimensions and genotypes were analysed by linear regression and adjusted by sex and age. The established alpha was 5%. RESULTS Individuals carrying CC in ESR1 rs2234693 had a decrease of -3.146 mm in ANS-Me (P = 0.044). In addition, rs4986938 in ESR2 was associated with S-N measurement (P = 0.009/ ß = -3.465). This marker was also associated with Go-Pg measurement, in which the CC genotype had a decrease of -3.925 mm in the length of the mandibular body (P = 0.043). CONCLUSION The present study suggests that in ESR1 and ESR2 are markers for variations in the craniofacial dimensions. However, further research should confirm the results.
Collapse
Affiliation(s)
- Marjorie Ayumi Omori
- School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Guido Artemio Marañón-Vásquez
- School of Dentistry, Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mirian Aiko Nakane Matsumoto
- School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Mariele Andrade do Nascimento
- School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mônica Tirre de Souza Araújo
- School of Dentistry, Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria Bernadete Sasso Stuani
- School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo Nelson-Filho
- School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Scariot
- School of Health Sciences, Positivo University, Curitiba, PR, Brazil.,Federal University of Paraná, Curitiba, PR, Brazil
| | - Erika Calvano Küchler
- School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil.,School of Health Sciences, Positivo University, Curitiba, PR, Brazil
| |
Collapse
|
20
|
Silva-Sousa AC, Mazzi-Chaves JF, Freitas JV, Salles AG, Segato RABDS, Silva LABD, Antunes LAA, Antunes LS, Baratto-Filho F, Sousa-Neto MD, Küchler EC. Association between Estrogen, Vitamin D and Microrna17 Gene Polymorphisms and Periapical Lesions. Braz Dent J 2020; 31:19-24. [DOI: 10.1590/0103-644020200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract This study evaluated the association between polymorphisms in genes encoding estrogen receptors 1 (ESR1) and 2 (ESR2), vitamin D receptor (VDR) and in microRNA17 (which binds to ESR1 and VDR) with persistent apical periodontitis (PAP) after the endodontic treatment. We included 162 patients who completed endodontic treatment at least one year ago and presented apical periodontitis at the beginning of the root canal therapy. Clinical and radiographic exams were performed to evaluate the presence of PAP or healthy periradicular tissues (healed). Saliva samples were collected as a genomic DNA. The genotyping of ESR1 (rs2234693 and rs9340799), ESR2 (rs1256049 and rs4986938), VDR (rs739837 and rs2228570) and miRNA17 (rs4284505) were performed by real-time PCR. Chi-square test was used to the distribution of genotype and allele frequencies. Haplotype analysis was also performed. Eighty-nine patients were included in the “healed” group and 73 in the “PAP” group. No association was found between the allelic and genotypic polymorphisms studied and PAP (p>0.05). Haplotype analysis also did not demonstrated an association (p>0.05). In conclusion, the genetic polymorphisms in ESR1, ESR2, VDR and miRNA17 are not associated with PAP.
Collapse
|