1
|
Chen X, Shen X, Yang T, Cao Y, Zhao X. New insight into the development of synpolydactyly caused by expansion of HOXD13 polyalanine based on weighted gene co-expression network analysis. BMC Med Genomics 2024; 17:259. [PMID: 39472920 PMCID: PMC11523653 DOI: 10.1186/s12920-024-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/30/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Synpolydactyly (SPD) is mainly caused by mutations of polyalanine expansion (PAE) in the transcription factor gene HOXD13 and the involved cell types and signal pathway are still not clear possible pathways and single-cell expression characteristics of limb bud in HOXD13 PAE mice was analyzed in this study. METHOD We investigated a previous study of a mouse model with SPD and conducted weighted gene co-expression network analysis (WGCNA) using a single-cell RNA sequencing dataset from limb bud cells of SPD mouse model of HOXD13 + 7A heterozygote. RESULTS Analysis of WGCNA revealed that synpolydactyly-associated Hoxd13 PAEs alter the immune response and osteoclast differentiation, and enhance DNA replication. Bmp4, Hand2, Hoxd12, Lnp, Prrx1, Gmnn, and Cdc6 were found to play potentially key roles in synpolydactyly. CONCLUSIONS These findings evaluated the main genes related to SPD with PAE mutations in HOXD13 and advance our understanding of human limb development.
Collapse
Affiliation(s)
- Xiumin Chen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiaofang Shen
- Pediatric Orthopedics, Children's Hospital of Soochow University, Suzhou, China
| | - Tao Yang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yixuan Cao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xiuli Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
2
|
Zhang R, Mu C, Chang L, Shen X, Bu Z, Yang M, Fu S, Tang Q, Liu P, Yang X. Whole-Genome Sequencing for Identifying Candidate Genes Related to the Special Phenotypes of the Taihu Dianzi Pigeon. Animals (Basel) 2024; 14:1047. [PMID: 38612286 PMCID: PMC11011069 DOI: 10.3390/ani14071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The Taihu Dianzi pigeon is a breed native to China, and its special piebalding, crest, and polydactyly phenotypes are the result of artificial and natural selection. Here, we analyzed the genetic differences among three kinds of pigeons with different phenotypes at the genomic level. A selective sweep was conducted based on the fixation index (FST) and nucleotide diversity (π) ratio, and the results revealed that MC1R was related to the formation of the distinctive piebalding of the Taihu Dianzi pigeon. Combined with the results of genome-wide association studies, we identified candidate genes associated with the crest (SMYD and STOX2) and polydactyly (SLC52A3 and ANGPT4). The candidate genes identified in this study and their variants may be useful for understanding the genetic mechanism underlying the special phenotypes of the Taihu Dianzi pigeon. This study provides new insights into the genetic factors that may influence the formation of the special piebalding, crest, and polydactyly characteristics in pigeons.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Chunyu Mu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Lingling Chang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Xinyue Shen
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Zhu Bu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Mingjun Yang
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| | - Shengyong Fu
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Qingping Tang
- Institute of Poultry Science, Chinese Academy of Agricultural Sciences Poultry Institute, Yangzhou 225100, China; (R.Z.); (C.M.); (L.C.); (X.S.); (Z.B.); (S.F.)
| | - Peiyao Liu
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| | - Xiaoming Yang
- Henan Tiancheng Pigeon Industry Co., Ltd., Pingdingshan 462513, China; (M.Y.); (P.L.); (X.Y.)
| |
Collapse
|
3
|
Gottschalk A, Sczakiel HL, Hülsemann W, Schwartzmann S, Abad-Perez AT, Grünhagen J, Ott CE, Spielmann M, Horn D, Mundlos S, Jamsheer A, Mensah MA. HOXD13-associated synpolydactyly: Extending and validating the genotypic and phenotypic spectrum with 38 new and 49 published families. Genet Med 2023; 25:100928. [PMID: 37427568 DOI: 10.1016/j.gim.2023.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/02/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023] Open
Abstract
PURPOSE HOXD13 is an important regulator of limb development. Pathogenic variants in HOXD13 cause synpolydactyly type 1 (SPD1). How different types and positions of HOXD13 variants contribute to genotype-phenotype correlations, penetrance, and expressivity of SPD1 remains elusive. Here, we present a novel cohort and a literature review to elucidate HOXD13 phenotype-genotype correlations. METHODS Patients with limb anomalies suggestive of SPD1 were selected for analysis of HOXD13 by Sanger sequencing, repeat length analysis, and next-generation sequencing. Literature was reviewed for HOXD13 heterozygotes. Variants were annotated for phenotypic data. Severity was calculated, and cluster and decision-tree analyses were performed. RESULTS We identified 98 affected members of 38 families featuring 11 different (likely) causative variants and 4 variants of uncertain significance. The most frequent (25/38) were alanine repeat expansions. Phenotypes ranged from unaffected heterozygotes to severe osseous synpolydactyly, with intra- and inter-familial heterogeneity and asymmetry. A literature review provided 160 evaluable affected members of 49 families with SPD1. Computer-aided analysis only corroborated a positive correlation between alanine repeat length and phenotype severity. CONCLUSION Our findings support that HOXD13-protein condensation in addition to haploinsufficiency is the molecular pathomechanism of SPD1. Our data may, also, facilitate the interpretation of synpolydactyly radiographs by future automated tools.
Collapse
Affiliation(s)
- Annika Gottschalk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany
| | - Henrike L Sczakiel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany; Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Wiebke Hülsemann
- Handsurgery Department, Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Sarina Schwartzmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany
| | - Angela T Abad-Perez
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany
| | - Johannes Grünhagen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany; Labor Berlin Charité Vivantes GmbH, Department of Human Genetics, Berlin, Germany
| | - Claus-Eric Ott
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Human Molecular Genomics Group, Berlin, Germany; Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany
| | - Denise Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany
| | - Stefan Mundlos
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany; Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland; Centers for Medical Genetics, GENESIS, Poznan, Poland
| | - Martin A Mensah
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany; Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany.
| |
Collapse
|
4
|
Chen X, Zhao F, Xu Y, Cao Y, Li S, Zhang X, Zhao X. Clinical and genetic analysis in Chinese families with synpolydactyly, and cellular localization of HOXD13 with different length of polyalanine tract. Front Genet 2023; 14:1105046. [PMID: 37035736 PMCID: PMC10073534 DOI: 10.3389/fgene.2023.1105046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/09/2023] [Indexed: 04/11/2023] Open
Abstract
Synpolydactyly (SPD) is caused by mutations in the transcription factor gene HOXD13. Such mutations include polyalanine expansion (PAE), but further study is required for the phenotypic spectrum characteristics of HOXD13 PAE. We investigated four unrelated Chinese families with significant limb malformations. Three PAEs were found in the HOXD13 polyalanine coding region: c.172_192dup (p.Ala58_Ala64dup) in Family 1, c.169_192dup (p.Ala57_Ala64dup) in Family 2, and c.183_210dup (p.Ala62_Ala70dup) in Family 3 and Family 4. Interestingly, we identified a new manifestation of preaxial polydactyly in both hands in a pediatric patient with an expansion of seven alanines, a phenotype not previously noted in SPD patients. Comparing with the wild-type cells and mutant cells with polyalanine contractions (PACs), the HOXD13 protein with a PAE of nine-alanine or more was difficult to enter the nucleus, and easy to form inclusion bodies in the cytoplasm, and with the increase of PAE, the more inclusion bodies were formed. This study not only expanded the phenotypic spectrum of SPD, but also enriched our understanding of its pathogenic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xue Zhang
- *Correspondence: Xue Zhang, ; Xiuli Zhao,
| | - Xiuli Zhao
- *Correspondence: Xue Zhang, ; Xiuli Zhao,
| |
Collapse
|
5
|
Sahoo S, Banik S, Giri SK, Tripathy PR, Kumar KCP. Epidemiological Characteristics and Role of Connexin-43 in Patients of Syndactyly Attending a Tertiary Care Center in Odisha, India. Cureus 2022; 14:e30327. [DOI: 10.7759/cureus.30327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
|
6
|
Husile H, Wu Z, Yang L, Cao Y, Wu Q. Identification of a HOXD13 variant in a Mongolian family with incomplete penetrance syndactyly by exon sequencing. BMC Med Genomics 2022; 15:210. [PMID: 36195906 PMCID: PMC9533607 DOI: 10.1186/s12920-022-01360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Syndactyly (SD) refers to a deformity caused by the fusion and limb differentiation disorder of soft tissues and/or skeletons to varying extents between adjacent fingers (toes). The main features of this disease are phenotypic heterogeneity and genetic heterogeneity. In this study, we examined four generations of a Chinese Mongolian with different phenotypes of syndactylia and analysed and identified the pathogenic genetic variants of SD by exon sequencing. Methods The clinical phenotypes of patients were analysed, and the hands and feet were examined by X-ray. The pedigree was drawn, and the family data were analysed. Peripheral blood was collected from the family members, and genomic DNA was extracted. The candidate genes of SD were identified by exon sequencing, and the mutation sites of the captured candidate genes were amplified by PCR and verified by Sanger sequencing. Results The family has congenital syndactyly, which is an autosomal dominant disease. At present, this condition has been passed down for 4 generations and was identified in 9 patients, including 4 males and 5 females. Five patients, I2, II4, III5, III,7 and III10, had unilateral syndactyly, and four patients, III16, IV3, IV6 and IV7, had bilateral finger syndactyly. All of their toes were unaffected. The proband and the other patients in this family had a c.917G > A (p.R306Q) mutation, which is located at position 917 of the second exon of the HOXD13 gene. This mutation results in a change in the amino acid at position 306, in which arginine is changed to glutamine. This mutation cosegregates in unaffected individuals and affected patients in this family. Moreover, 201 Mongolian genome databases and a thousand human genome databases were referenced to further confirm that the pathogenic genetic variant that causes syndactyly in this family is found in HOXD13. Conclusion This study found that the mutation site of the pathogenic gene in this family was HOXD13, c.917G > A (p.R306Q). The phenotype of the family member III12 was normal, but this member was also a carrier of the pathogenic genetic variant. This indicates that the disease of this family has incomplete penetrance characteristics. Our results further enrich the expression profile of the HOXD13 gene. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01360-3.
Collapse
Affiliation(s)
- Husile Husile
- Affiliated Hospital of Inner Mongolia Minzu University, 028000, Tongliao, China.,Inner Mongolia Engineneering and Technical Research Center for personalized Medicine, 028000, Tongliao, China
| | - Zhifeng Wu
- Inner Mongolia Engineneering and Technical Research Center for personalized Medicine, 028000, Tongliao, China.,College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, 028000, Tongliao, China
| | - Liqing Yang
- Affiliated Hospital of Inner Mongolia Minzu University, 028000, Tongliao, China.,Inner Mongolia Engineneering and Technical Research Center for personalized Medicine, 028000, Tongliao, China
| | - Yaning Cao
- School Of Life Sciences, Inner Mongolia University, 010000, Hohhot, China
| | - Qizhu Wu
- Affiliated Hospital of Inner Mongolia Minzu University, 028000, Tongliao, China. .,Inner Mongolia Engineneering and Technical Research Center for personalized Medicine, 028000, Tongliao, China.
| |
Collapse
|
7
|
Wang L, Qiao C, Cao L, Cai S, Ma X, Song X, Jiang Q, Huang C, Wang J. Significance of HOXD transcription factors family in progression, migration and angiogenesis of cancer. Crit Rev Oncol Hematol 2022; 179:103809. [PMID: 36108961 DOI: 10.1016/j.critrevonc.2022.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022] Open
Abstract
The transcription factors (TFs) of the HOX family play significant roles during early embryonic development and cellular processes. They also play a key role in tumorigenesis as tumor oncogenes or suppressors. Furthermore, TFs of the HOXD geFIne cluster affect proliferation, migration, and invasion of tumors. Consequently, dysregulated activity of HOXD TFs has been linked to clinicopathological characteristics of cancer. HOXD TFs are regulated by non-coding RNAs and methylation of DNA on promoter and enhancer regions. In addition, HOXD genes modulate the biological function of cancer cells via the MEK and AKT signaling pathways, thus, making HOXD TFs, a suitable molecular marker for cancer prognosis and therapy. In this review, we summarized the roles of HOXD TFs in different cancers and highlighted its potential as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Institute of precision medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Chenyang Qiao
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Shuang Cai
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xiaoping Ma
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xinqiu Song
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, Shaanxi, PR China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China.
| | - Jinhai Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Institute of precision medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
8
|
Zaib T, Rashid H, Khan H, Zhou X, Sun P. Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives. Genes (Basel) 2022; 13:771. [PMID: 35627156 PMCID: PMC9141913 DOI: 10.3390/genes13050771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
A comprehensive summary of recent knowledge in syndactyly (SD) is important for understanding the genetic etiology of SD and disease management. Thus, this review article provides background information on SD, as well as insights into phenotypic and genetic heterogeneity, newly identified gene mutations in various SD types, the role of HOXD13 in limb deformities, and recently introduced modern surgical techniques for SD. This article also proposes a procedure for genetic analysis to obtain a clearer genotype-phenotype correlation for SD in the future. We briefly describe the classification of non-syndromic SD based on variable phenotypes to explain different phenotypic features and mutations in the various genes responsible for the pathogenesis of different types of SD. We describe how different types of mutation in HOXD13 cause various types of SD, and how a mutation in HOXD13 could affect its interaction with other genes, which may be one of the reasons behind the differential phenotypes and incomplete penetrance. Furthermore, we also discuss some recently introduced modern surgical techniques, such as free skin grafting, improved flap techniques, and dermal fat grafting in combination with the Z-method incision, which have been successfully practiced clinically with no post-operative complications.
Collapse
Affiliation(s)
- Tahir Zaib
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- (T.Z.)
- (X.Z.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Hibba Rashid
- Department of Biotechnology and Microbiology, Abasyn University, Peshawar 25000, Pakistan
| | - Hanif Khan
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- (T.Z.)
- (X.Z.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- (T.Z.)
- (X.Z.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
9
|
Melas M, Kautto EA, Franklin SJ, Mori M, McBride KL, Mosher TM, Pfau RB, Hernandez-Gonzalez ME, McGrath SD, Magrini VJ, White P, Samora JB, Koboldt DC, Wilson RK. Long-read whole genome sequencing reveals HOXD13 alterations in synpolydactyly. Hum Mutat 2021; 43:189-199. [PMID: 34859533 DOI: 10.1002/humu.24304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
Synpolydactyly 1, also called syndactyly type II (SDTY2), is a genetic limb malformation characterized by polydactyly with syndactyly involving the webbing of the third and fourth fingers, and the fourth and fifth toes. It is caused by heterozygous alterations in HOXD13 with incomplete penetrance and phenotypic variability. In our study, a five-generation family with an SPD phenotype was enrolled in our Rare Disease Genomics Protocol. A comprehensive examination of three generations using Illumina short-read whole-genome sequencing (WGS) did not identify any causative variants. Subsequent WGS using Pacific Biosciences (PacBio) long-read HiFi Circular Consensus Sequencing (CCS) revealed a heterozygous 27-bp duplication in the polyalanine tract of HOXD13. Sanger sequencing of all available family members confirmed that the variant segregates with affected individuals. Reanalysis of an unrelated family with a similar SPD phenotype uncovered a 21-bp (7-alanine) duplication in the same region of HOXD13. Although ExpansionHunter identified these events in most individuals in a retrospective analysis, low sequence coverage due to high GC content in the HOXD13 polyalanine tract makes detection of these events challenging. Our findings highlight the value of long-read WGS in elucidating the molecular etiology of congenital limb malformation disorders.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Esko A Kautto
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Samuel J Franklin
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mari Mori
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kim L McBride
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Ruthann B Pfau
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Vincent J Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Julie Balch Samora
- Department of Orthopedic Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Gong Y, Zhan Y, Yuan T, Liao Y, Zhang L, Liu X, Zheng Y, Bao Y. Association of HTRA1 and CFH gene polymorphisms with age-related macular degeneration in Ningbo, China. Int Ophthalmol 2021; 41:995-1002. [PMID: 33387109 DOI: 10.1007/s10792-020-01655-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is one of the major causes of blindness, and the incidence of this disease has been increasing in recent years. OBJECTIVE To investigate the association between the single nucleotide polymorphisms (SNPs) of the high temperature requirement factor A-1 (HTRA1) and complement factor H (CFH) genes and susceptibility to AMD in Ningbo, China. METHODS Ninety-eight patients with AMD and seventy-three controls were recruited at the Sixth Hospital of Ningbo from August 2017 to April 2019 in China. Genomic DNA was extracted from the venous blood provided by the hospital, and the genotypes of the AMD susceptibility genes CFH and HTAR1 were detected by polymerase chain reaction and sequenced directly. The SNPs rs11200638 on the HTRA1 gene and rs3753394 on the CFH gene were selected for genotype and association analysis. The correlations between the different genotypes of HTRA1 and CFH and AMD were analysed by the Chi-squared test. RESULTS All the genotypes adhered to the Hardy-Weinberg equilibrium. There were three genotypes (AA, AG and GG) in HTRA1 (rs11200638). The differences in genotypes and allele frequency between the AMD group and the control group were statistically significant (P < 0.05). The A allele was a risk allele (OR: 4.19, 95% Cl: 2.28 ~ 7.70, P < 0.05), with a frequency of 61.7% in patients versus 43.8% in controls. However, the rs3753394 SNP in CFH was not associated with AMD in our study (P > 0.05). CONCLUSIONS The rs11200638 SNP of the HTRA1 gene is associated with AMD, and the AA genotype is a risk factor for AMD in the Ningbo population. There is no significant correlation between the rs3753394 SNP of the CFH gene and AMD.
Collapse
Affiliation(s)
- Yan Gong
- Department of Eyes, Ningbo Eye Hospital, Ningbo, 315000, China
| | - Yu Zhan
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tao Yuan
- Department of Eyes, Ningbo Eye Hospital, Ningbo, 315000, China
| | - Yanhong Liao
- Department of Eyes, Ningbo Eye Hospital, Ningbo, 315000, China
| | - Lingyi Zhang
- Department of Eyes, Ningbo Eye Hospital, Ningbo, 315000, China
| | - Xiaotian Liu
- Department of Eyes, Ningbo Eye Hospital, Ningbo, 315000, China
| | - Yuanhao Zheng
- Department of Eyes, Ningbo Eye Hospital, Ningbo, 315000, China
| | - Yongbo Bao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|