1
|
Sunebo S, Appelqvist H, Häggqvist B, Danielsson O. Reply to "Letter on Multiple Acyl-Coenzyme A Dehydrogenase Deficiency Is Associated with Sertraline Use". Ann Neurol 2024; 96:1032-1033. [PMID: 39387281 DOI: 10.1002/ana.27106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Sofie Sunebo
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hanna Appelqvist
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bo Häggqvist
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Olof Danielsson
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Qiu Y, Zhu M, Tan D, Hong D. Letter on Multiple Acyl-Coenzyme A Dehydrogenase Deficiency is Associated with Sertraline Use. Ann Neurol 2024; 96:1031-1032. [PMID: 39377254 DOI: 10.1002/ana.27101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024]
Affiliation(s)
- Yusen Qiu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Rare Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Neurology, Jiangxi Academy of Clinical Medical Science, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Sunebo S, Appelqvist H, Häggqvist B, Danielsson O. Multiple Acyl-Coenzyme A Dehydrogenase Deficiency Is Associated with Sertraline Use - Is There an Acquired Form? Ann Neurol 2024; 96:802-811. [PMID: 39092677 DOI: 10.1002/ana.27030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is a disorder of fatty acid oxidation and considered an inborn error of metabolism. In recent years, we have diagnosed an increasing number of patients where, despite extensive investigation, no disease-causing mutations have been found. We therefore investigated a cohort of consecutive patients, with the objective to detect possible non-genetic causes. METHODS We searched the patient records and the registry of muscle biopsies, for patients with MADD, diagnosed within the past 10 years. The patient records were reviewed regarding symptoms, clinical findings, comorbidities, drugs, diagnostic investigations, and response to treatment. In addition, complementary investigations of muscle tissue were performed. RESULTS We identified 9 patients diagnosed with late-onset MADD. All presented with muscle weakness and elevated levels of creatine kinase. A lipid storage myopathy was evident in the muscle biopsies, as was elevated acylcarnitines in blood. Despite thorough genetic investigations, a probable genetic cause was found in only 2 patients. Remarkably, all 7 patients without disease-causing mutations were treated with sertraline. In some cases, a deterioration of symptoms closely followed dose increase, and discontinuation resulted in an improved acylcarnitine profile. All 9 patients responded to riboflavin treatment with normalization of creatine kinase and muscle biopsy findings, and in 8 patients the clinical symptoms clearly improved. INTERPRETATION Our findings strongly suggest that sertraline may induce an acquired form of MADD in some patients. Importantly, riboflavin treatment seems to be similarly effective as in genetic MADD, but discontinuation of sertraline is reasonably warranted. ANN NEUROL 2024;96:802-811.
Collapse
Affiliation(s)
- Sofie Sunebo
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hanna Appelqvist
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bo Häggqvist
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Olof Danielsson
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Salort-Campana E, Attarian S. Late-onset myopathies. Curr Opin Neurol 2024; 37:523-535. [PMID: 39017649 DOI: 10.1097/wco.0000000000001298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW Late-onset myopathies are defined as muscle diseases that begin after the age of 50 years. Some myopathies present classically in the elderly, whereas others may have a variable age of onset, including late-onset presentation. The purpose of this review is to summarize and comment on the most recent evidence regarding the main diagnosis of late-onset myopathies focusing on genetic causes. RECENT FINDINGS Although late-onset myopathies (LOM) are expected to be predominantly acquired myopathies, some common genetic myopathies, such as facioscapulohumeral muscular dystrophy (FSHD), can present late in life, usually with an atypical presentation. In addition, metabolic myopathies, which are classically early-onset diseases, are also diagnoses to be considered, particularly as they may be treatable. Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) has recently been identified as a cause of subacute LOM with a dramatic response to riboflavin supplementation. SUMMARY Inclusion body myositis is the most frequent of all LOM. Myotonic dystrophy type 2, FSHD and oculopharyngeal muscular dystrophy are the most frequent causes of genetic LOM. We summarize the major differential diagnoses and the clinical features on clinical examination that are suggestive of a genetic diagnosis to provide a diagnostic approach.
Collapse
Affiliation(s)
| | - Shahram Attarian
- Neuromuscular Reference Center PACARARE, La Timone Hospital University, Marseille
- Filnemus, France
| |
Collapse
|
5
|
Zheng W, Li X, Yang S, Luo C, Xiao F. Features and diagnostic value of body composition in patients with late-onset multiple acyl-CoA dehydrogenase deficiency. Acta Neurol Belg 2022; 122:969-977. [PMID: 35618995 DOI: 10.1007/s13760-022-01974-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/03/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study aims to analyse the body composition features and its changes after treatment in patients with late-onset multiple acyl-CoA dehydrogenase deficiency (MADD). METHODS Body composition was measured in patients with late-onset MADD, inflammatory myopathies, mitochondrial myopathy, and healthy controls. The correlation analyses between body composition and traditional parameters were performed. Comparisons between groups and receiver operating characteristic curve analyses were performed. RESULTS A total of 42 participants included 13 patients with late-onset MADD, 13 healthy controls, 10 with inflammatory myopathy, and 6 with mitochondrial myopathy. Bilateral grip strength and forced vital capacity (FVC) were moderate-strong correlated with skeletal muscle mass (right hand grip strength: r = 0.728, P < 0.001; left hand grip strength: r = 0.676, P < 0.001; FVC: r = 0.754, P < 0.001). Serum CK was moderately and negatively correlated with right hand grip strength (r = - 0.618, P = 0.005), left hand grip strength (r = - 0.630, P = 0.004), FVC (r = - 0.665, P = 0.002), manual muscle testing (MMT) (r = - 0.729, P = 0.000), and lean body mass skeletal muscle percentage (r = - 0.501, P = 0.029). Body composition features in patients with late-onset MADD were as follows: (1) obvious fat accumulation, (2) reduction of muscle mass, and (3) reduction of body water and intracellular water ratio. Some indicators of body composition were found to be valuable in diagnosis and eliminating differential diagnoses, such as visceral fat area (sensitivity 84.62%; specificity 92.31%; AUC 0.905) and fat mass (sensitivity 84.62%; specificity 75.00%; AUC 0.837). Seven patients were followed-up (2-9 months). Prior to treatment, the changes in body composition in these patients were conflicting. CONCLUSIONS Hand grip strength and FVC were strongly associated with body composition. Body composition features in late-onset MADD are fat accumulation, muscle loss, decrease in total body water, and intracellular water ratio. Body composition features are valuable for diagnosis and assessment.
Collapse
Affiliation(s)
- Wei Zheng
- Chongqing Key Laboratory of Neurology, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xue Li
- Chongqing Key Laboratory of Neurology, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shiyi Yang
- Chongqing Key Laboratory of Neurology, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Fei Xiao
- Chongqing Key Laboratory of Neurology, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
6
|
Ruiz-Sala P, Peña-Quintana L. Biochemical Markers for the Diagnosis of Mitochondrial Fatty Acid Oxidation Diseases. J Clin Med 2021; 10:jcm10214855. [PMID: 34768374 PMCID: PMC8584803 DOI: 10.3390/jcm10214855] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fatty acid β-oxidation (FAO) contributes a large proportion to the body’s energy needs in fasting and in situations of metabolic stress. Most tissues use energy from fatty acids, particularly the heart, skeletal muscle and the liver. In the brain, ketone bodies formed from FAO in the liver are used as the main source of energy. The mitochondrial fatty acid oxidation disorders (FAODs), which include the carnitine system defects, constitute a group of diseases with several types and subtypes and with variable clinical spectrum and prognosis, from paucisymptomatic cases to more severe affectations, with a 5% rate of sudden death in childhood, and with fasting hypoketotic hypoglycemia frequently occurring. The implementation of newborn screening programs has resulted in new challenges in diagnosis, with the detection of new phenotypes as well as carriers and false positive cases. In this article, a review of the biochemical markers used for the diagnosis of FAODs is presented. The analysis of acylcarnitines by MS/MS contributes to improving the biochemical diagnosis, both in affected patients and in newborn screening, but acylglycines, organic acids, and other metabolites are also reported. Moreover, this review recommends caution, and outlines the differences in the interpretation of the biomarkers depending on age, clinical situation and types of samples or techniques.
Collapse
Affiliation(s)
- Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain;
| | - Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Mother and Child Insular University Hospital Complex, Asociación Canaria para la Investigación Pediátrica (ACIP), CIBEROBN, University Institute for Research in Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Correspondence:
| |
Collapse
|