1
|
Yao J, Sun L, Gao F, Zhu W. Mesenchymal stem/stromal cells: dedicator to maintain tumor homeostasis. Hum Cell 2024; 38:21. [PMID: 39607530 DOI: 10.1007/s13577-024-01154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) act as a factor in tumor recurrence after drug treatment with their involvement observed in various cancer types. As a constituent of the tumor microenvironment (TME), MSCs not only provide support to tumor growth but also establish connections with diverse cell populations within the TME, serving as mediators linking different tumor-associated components. MSCs play an important role in maintaining tumor progression due to their stem cell properties and remarkable differentiation capacity. Given the intensification of tumor research and the encouraging results achieved in recent years,the aim of this article is to investigate the supportive role of MSCs in tumor cells as well as in various cellular and non-cellular components of the tumor microenvironment. Furthermore, the article shows that MSCs do not have a specific anatomical ecological niche and describes the contribution of MSCs to the maintenance of tumor homeostasis on the basis of homing, plasticity and tumor-forming properties. By elucidating the critical roles of different components of TME, this study provides a comprehensive understanding of tumor therapy and may offer new insights into defeating cancer.
Collapse
Affiliation(s)
- Juncun Yao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, People's Republic of China
| | - Feng Gao
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, 214500, People's Republic of China.
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
3
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
4
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
5
|
Generation of Cancer Stem/Initiating Cells by Cell-Cell Fusion. Int J Mol Sci 2022; 23:ijms23094514. [PMID: 35562905 PMCID: PMC9101717 DOI: 10.3390/ijms23094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
CS/ICs have raised great expectations in cancer research and therapy, as eradication of this key cancer cell type is expected to lead to a complete cure. Unfortunately, the biology of CS/ICs is rather complex, since no common CS/IC marker has yet been identified. Certain surface markers or ALDH1 expression can be used for detection, but some studies indicated that cancer cells exhibit a certain plasticity, so CS/ICs can also arise from non-CS/ICs. Another problem is intratumoral heterogeneity, from which it can be inferred that different CS/IC subclones must be present in the tumor. Cell–cell fusion between cancer cells and normal cells, such as macrophages and stem cells, has been associated with the generation of tumor hybrids that can exhibit novel properties, such as an enhanced metastatic capacity and even CS/IC properties. Moreover, cell–cell fusion is a complex process in which parental chromosomes are mixed and randomly distributed among daughter cells, resulting in multiple, unique tumor hybrids. These, if they have CS/IC properties, may contribute to the heterogeneity of the CS/IC pool. In this review, we will discuss whether cell–cell fusion could also lead to the origin of different CS/ICs that may expand the overall CS/IC pool in a primary tumor.
Collapse
|
6
|
Kaigorodova EV, Kozik AV, Zavaruev IS, Grishchenko MY. Hybrid/Atypical Forms of Circulating Tumor Cells: Current State of the Art. BIOCHEMISTRY (MOSCOW) 2022; 87:380-390. [PMID: 35527376 PMCID: PMC8993035 DOI: 10.1134/s0006297922040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cancer is one of the most common diseases worldwide, and its treatment is associated with many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many causes. One may be the cell fusion, a process that is relevant to both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. This literature review aimed to summarize the existing data on the hybrid/atypical forms of circulating cancer cells and their role in tumor progression. For that, the bioinformatics search in universal databases, such as PubMed, NCBI, and Google Scholar was conducted by using the keywords “hybrid cancer cells”, “cancer cell fusion”, etc. In this review the latest information related to the hybrid tumor cells, theories of their genesis, characteristics of different variants with data from our own researches are presented. Many aspects of the hybrid cell research are still in their infancy. However, with the level of knowledge already accumulated, circulating hybrids such as CAML and CHC could be considered as promising biomarkers of cancerous tumors, and even more as a new approach to cancer treatment.
Collapse
Affiliation(s)
- Evgeniya V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
- Siberian State Medical University, Tomsk, 634050, Russia
| | - Alexey V Kozik
- Siberian State Medical University, Tomsk, 634050, Russia
| | | | | |
Collapse
|
7
|
Tretyakova MS, Subbalakshmi AR, Menyailo ME, Jolly MK, Denisov EV. Tumor Hybrid Cells: Nature and Biological Significance. Front Cell Dev Biol 2022; 10:814714. [PMID: 35242760 PMCID: PMC8886020 DOI: 10.3389/fcell.2022.814714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the leading cause of cancer death and can be realized through the phenomenon of tumor cell fusion. The fusion of tumor cells with other tumor or normal cells leads to the appearance of tumor hybrid cells (THCs) exhibiting novel properties such as increased proliferation and migration, drug resistance, decreased apoptosis rate, and avoiding immune surveillance. Experimental studies showed the association of THCs with a high frequency of cancer metastasis; however, the underlying mechanisms remain unclear. Many other questions also remain to be answered: the role of genetic alterations in tumor cell fusion, the molecular landscape of cells after fusion, the lifetime and fate of different THCs, and the specific markers of THCs, and their correlation with various cancers and clinicopathological parameters. In this review, we discuss the factors and potential mechanisms involved in the occurrence of THCs, the types of THCs, and their role in cancer drug resistance and metastasis, as well as potential therapeutic approaches for the prevention, and targeting of tumor cell fusion. In conclusion, we emphasize the current knowledge gaps in the biology of THCs that should be addressed to develop highly effective therapeutics and strategies for metastasis suppression.
Collapse
Affiliation(s)
- Maria S Tretyakova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Ayalur R Subbalakshmi
- Cancer Systems Biology Laboratory, Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Mohit Kumar Jolly
- Cancer Systems Biology Laboratory, Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
8
|
Jing Y, Liang W, Zhang L, Tang J, Huang Z. The Role of Mesenchymal Stem Cells in the Induction of Cancer-Stem Cell Phenotype. Front Oncol 2022; 12:817971. [PMID: 35251985 PMCID: PMC8891610 DOI: 10.3389/fonc.2022.817971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) modify and form their microenvironment by recruiting and activating specific cell types such as mesenchymal stem cells (MSCs). Tumor-infiltrating MSCs help to establish a suitable tumor microenvironment for the restoration of CSCs and tumor progression. In addition, crosstalk between cancer cells and MSCs in the microenvironment induces a CSC phenotype in cancer cells. Many mechanisms are involved in crosstalk between CSCs/cancer cells and MSCs including cell-cell interaction, secretion of exosomes, and paracrine secretion of several molecules including inflammatory mediators, cytokines, and growth factors. Since this crosstalk may contribute to drug resistance, metastasis, and tumor growth, it is suggested that blockade of the crosstalk between MSCs and CSCs/cancer cells can provide a new avenue to improving the cancer therapeutic tools. In this review, we will discuss the role of MSCs in the induction of cancer stem cell phenotype and the restoration of CSCs. We also discuss targeting the crosstalk between MSCs and CSCs/cancer cells as a therapeutic strategy.
Collapse
Affiliation(s)
- Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Junjun Tang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zongliang Huang, ; Junjun Tang ,
| | - Zongliang Huang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zongliang Huang, ; Junjun Tang ,
| |
Collapse
|
9
|
Zhang H, Ma H, Yang X, Fan L, Tian S, Niu R, Yan M, Zheng M, Zhang S. Cell Fusion-Related Proteins and Signaling Pathways, and Their Roles in the Development and Progression of Cancer. Front Cell Dev Biol 2022; 9:809668. [PMID: 35178400 PMCID: PMC8846309 DOI: 10.3389/fcell.2021.809668] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
Cell fusion is involved in many physiological and pathological processes, including gamete binding, and cancer development. The basic processes of cell fusion include membrane fusion, cytoplasmic mixing, and nuclear fusion. Cell fusion is regulated by different proteins and signaling pathways. Syncytin-1, syncytin-2, glial cell missing 1, galectin-1 and other proteins (annexins, myomaker, myomerger etc.) involved in cell fusion via the cyclic adenosine-dependent protein kinase A, mitogen-activated protein kinase, wingless/integrase-1, and c-Jun N-terminal kinase signaling pathways. In the progression of malignant tumors, cell fusion is essential during the organ-specific metastasis, epithelial-mesenchymal transformation, the formation of cancer stem cells (CSCs), cancer angiogenesis and cancer immunity. In addition, diploid cells can be induced to form polyploid giant cancer cells (PGCCs) via cell fusion under many kinds of stimuli, including cobalt chloride, chemotherapy, radiotherapy, and traditional Chinese medicine. PGCCs have CSC-like properties, and the daughter cells derived from PGCCs have a mesenchymal phenotype and exhibit strong migration, invasion, and proliferation abilities. Therefore, exploring the molecular mechanisms of cell fusion can enable us better understand the development of malignant tumors. In this review, the basic process of cell fusion and its significance in cancer is discussed.
Collapse
Affiliation(s)
- Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Ma
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shiwu Zhang
- Tianjin Union Medical Center, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Hass R, von der Ohe J, Dittmar T. Cancer Cell Fusion and Post-Hybrid Selection Process (PHSP). Cancers (Basel) 2021; 13:4636. [PMID: 34572863 PMCID: PMC8470238 DOI: 10.3390/cancers13184636] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Fusion of cancer cells either with other cancer cells (homotypic fusion) in local vicinity of the tumor tissue or with other cell types (e.g., macrophages, cancer-associated fibroblasts (CAFs), mesenchymal stromal-/stem-like cells (MSC)) (heterotypic fusion) represents a rare event. Accordingly, the clinical relevance of cancer-cell fusion events appears questionable. However, enhanced tumor growth and/or development of certain metastases can originate from cancer-cell fusion. Formation of hybrid cells after cancer-cell fusion requires a post-hybrid selection process (PHSP) to cope with genomic instability of the parental nuclei and reorganize survival and metabolic functionality. The present review dissects mechanisms that contribute to a PHSP and resulting functional alterations of the cancer hybrids. Based upon new properties of cancer hybrid cells, the arising clinical consequences of the subsequent tumor heterogeneity after cancer-cell fusion represent a major therapeutic challenge. However, cellular partners during cancer-cell fusion such as MSC within the tumor microenvironment or MSC-derived exosomes may provide a suitable vehicle to specifically address and deliver anti-tumor cargo to cancer cells.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Dittmar
- Institute of Immunology, Center of Biomedical Education and Research (ZABF), Witten/Herdecke University, 58448 Witten, Germany
| |
Collapse
|
11
|
Zhang DY, Monteiro MJ, Liu JP, Gu WY. Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clin Exp Pharmacol Physiol 2021; 48:1185-1202. [PMID: 34046925 DOI: 10.1111/1440-1681.13528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Vic, Australia
- Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Vic, Australia
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
12
|
Sieler M, Weiler J, Dittmar T. Cell-Cell Fusion and the Roads to Novel Properties of Tumor Hybrid Cells. Cells 2021; 10:cells10061465. [PMID: 34207991 PMCID: PMC8230653 DOI: 10.3390/cells10061465] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The phenomenon of cancer cell–cell fusion is commonly associated with the origin of more malignant tumor cells exhibiting novel properties, such as increased drug resistance or an enhanced metastatic capacity. However, the whole process of cell–cell fusion is still not well understood and seems to be rather inefficient since only a certain number of (cancer) cells are capable of fusing and only a rather small population of fused tumor hybrids will survive at all. The low survivability of tumor hybrids is attributed to post-fusion processes, which are characterized by the random segregation of mixed parental chromosomes, the induction of aneuploidy and further random chromosomal aberrations and genetic/epigenetic alterations in daughter cells. As post-fusion processes also run in a unique manner in surviving tumor hybrids, the occurrence of novel properties could thus also be a random event, whereby it might be speculated that the tumor microenvironment and its spatial habitats could direct evolving tumor hybrids towards a specific phenotype.
Collapse
|
13
|
Wang HF, Xiang W, Xue BZ, Wang YH, Yi DY, Jiang XB, Zhao HY, Fu P. Cell fusion in cancer hallmarks: Current research status and future indications. Oncol Lett 2021; 22:530. [PMID: 34055095 PMCID: PMC8138896 DOI: 10.3892/ol.2021.12791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is involved in several physiological processes, such as reproduction, development and immunity. Although cell fusion in tumors was reported 130 years ago, it has recently attracted great interest, with recent progress in tumorigenesis research. However, the role of cell fusion in tumor progression remains unclear. The pattern of cell fusion and its role under physiological conditions are the basis for our understanding of the pathological role of cell fusion. However, the role of cell fusion in tumors and its functions are complicated. Cell fusion can directly increase tumor heterogeneity by forming polyploids or aneuploidies. Several studies have reported that cell fusion is associated with tumorigenesis, metastasis, recurrence, drug resistance and the formation of cancer stem cells. Given the diverse roles cell fusion plays in different tumor phenotypes, methods based on targeted cell fusion have been designed to treat tumors. Research on cell fusion in tumors may provide novel ideas for further treatment.
Collapse
Affiliation(s)
- Hao-Fei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Hao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
14
|
Li Y, Zhong X, Zhang Y, Lu X. Mesenchymal Stem Cells in Gastric Cancer: Vicious but Hopeful. Front Oncol 2021; 11:617677. [PMID: 34046337 PMCID: PMC8144497 DOI: 10.3389/fonc.2021.617677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor progression depends on the collaborative interactions between tumor cells and the surrounding stroma. First-line therapies direct against cancer cells may not reach a satisfactory outcome, such as gastric cancer (GC), with high risk of recurrence and metastasis. Therefore, novel treatments and drugs target the effects of stroma components are to be promising alternatives. Mesenchymal stem cells (MSC) represent the decisive components of tumor stroma that are found to strongly affect GC development and progression. MSC from bone marrow or adjacent normal tissues express homing profiles in timely response to GC-related inflammation signals and anchor into tumor bulks. Then the newly recruited “naïve” MSC would achieve phenotype and functional alternations and adopt the greater tumor-supporting potential under the reprogramming of GC cells. Conversely, both new-comers and tumor-resident MSC are able to modulate the tumor biology via aberrant activation of oncogenic signals, metabolic reprogramming and epithelial-to-mesenchymal transition. And they also engage in remodeling the stroma better suited for tumor progression through immunosuppression, pro-angiogenesis, as well as extracellular matrix reshaping. On the account of tumor tropism, MSC could be engineered to assist earlier diagnosis of GC and deliver tumor-killing agents precisely to the tumor microenvironment. Meanwhile, intercepting and abrogating vicious signals derived from MSC are of certain significance for the combat of GC. In this review, we mainly summarize current advances concerning the reciprocal metabolic interactions between MSC and GC and their underlying therapeutic implications in the future.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunzhu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinliang Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Zhou Y, Cheng JT, Feng ZX, Wang YY, Zhang Y, Cai WQ, Han ZW, Wang XW, Xiang Y, Yang HY, Liu BR, Peng XC, Cui SZ, Xin HW. Could gastrointestinal tumor-initiating cells originate from cell-cell fusion in vivo? World J Gastrointest Oncol 2021; 13:92-108. [PMID: 33643526 PMCID: PMC7896421 DOI: 10.4251/wjgo.v13.i2.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/25/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-initiating cells (TICs) or cancer stem cells are believed to be responsible for gastrointestinal tumor initiation, progression, metastasis, and drug resistance. It is hypothesized that gastrointestinal TICs (giTICs) might originate from cell-cell fusion. Here, we systemically evaluate the evidence that supports or opposes the hypothesis of giTIC generation from cell-cell fusion both in vitro and in vivo. We review giTICs that are capable of initiating tumors in vivo with 5000 or fewer in vivo fused cells. Under this restriction, there is currently little evidence demonstrating that giTICs originate from cell-cell fusion in vivo. However, there are many reports showing that tumor generation in vitro occurs with more than 5000 fused cells. In addition, the mechanisms of giTIC generation via cell-cell fusion are poorly understood, and thus, we propose its potential mechanisms of action. We suggest that future research should focus on giTIC origination from cell-cell fusion in vivo, isolation or enrichment of giTICs that have tumor-initiating capabilities with 5000 or less in vivo fused cells, and further clarification of the underlying mechanisms. Our review of the current advances in our understanding of giTIC origination from cell-cell fusion may have significant implications for the understanding of carcinogenesis and future cancer therapeutic strategies targeting giTICs.
Collapse
Affiliation(s)
- Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Jun-Ting Cheng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Zi-Xian Feng
- Department of Oncology and Haematology, Lianjiang People's Hospital, Guangzhou 524400, Guangdong Province, China
| | - Ying-Ying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ying Zhang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Hui-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Bing-Rong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
16
|
Stucky A, Gao L, Sun L, Li SC, Chen X, Park TH, Cai J, Kabeer MH, Zhang X, Sinha UK, Zhong JF. Evidence for AJUBA-catenin-CDH4-linked differentiation resistance of mesenchymal stem cells implies tumorigenesis and progression of head and neck squamous cell carcinoma: a single-cell transcriptome approach. BLOOD AND GENOMICS 2021; 5:29-39. [PMID: 34368804 PMCID: PMC8346230 DOI: 10.46701/bg.2021012021106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing number of reports indicate that mesenchymal stem cells (MSCs) play an essential role in promoting tumorigenesis and progression of head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanisms underlying this process remain unclear. Using the MSC model system, this study analyzes the molecular pathway by which differentiation resistant MSCs promote HNSCC. MSCs were cultured in osteogenic differentiation media and harvested on days 12 and 19. Cells were stained for cell differentiation analysis using Alizarin Red. The osteogenesis-resistant MSCs (OR-MSCs) and MSC-differentiation-derived osteoblasts (D-OSTBs) were identified and subjected to the single-cell transcriptome analysis. Gene-specific analyses of these two sub-populations were performed for the patterns of differential expression. A total of 1 780 differentially expressed genes were determined to distinguish OR-MSCs significantly from D-OSTB. Notably, AJUBA, β-catenin, and CDH4 expression levels were upregulated considerably within the OR-MSCs compared to D-OSTBs. To confirm their clinical relevance, a survey of a clinical cohort revealed a high correlation among the expression levels of AJUBA, β-catenin and CDH4. The results shed new light that OR-MSCs participate in the development of HNSCC via a pathway mediated by AJUBA, β-catenin, CDH4, and CTNNB1, thereby implying that MSC-based therapy is a promising therapeutic approach in the management of HNSCC.
Collapse
Affiliation(s)
- Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Gao
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lan Sun
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shengwen Calvin Li
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC), Orange, CA 92868, USA
- Department of Neurology, University of California - Irvine School of Medicine, Orange, CA 92868, USA
| | - Xuelian Chen
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tiffany H. Park
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jin Cai
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, Children's Hospital of Orange County, Orange, CA 92868, USA
- Department of Surgery, University of California - Irvine School of Medicine, Orange, CA 92868, USA
| | - Xi Zhang
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jiang F. Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
17
|
Zhang LN, Zhang DD, Yang L, Gu YX, Zuo QP, Wang HY, Xu J, Liu DX. Roles of cell fusion between mesenchymal stromal/stem cells and malignant cells in tumor growth and metastasis. FEBS J 2020; 288:1447-1456. [PMID: 33070450 DOI: 10.1111/febs.15483] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023]
Abstract
Invasion and metastasis are the basic characteristics and important markers of malignant tumors, which are also the main cause of death in cancer patients. Epithelial-mesenchymal transition (EMT) is recognized as the first step of tumor invasion and metastasis. Many studies have demonstrated that cell fusion is a common phenomenon and plays a critical role in cancer development and progression. At present, cancer stem cell fusion has been considered as a new mechanism of cancer metastasis. Mesenchymal stromal/stem cell (MSC) is a kind of adult stem cells with high self-renewal ability and multidifferentiation potential, which is used as a very promising fusogenic candidate in the tumor microenvironment and has a crucial role in cancer progression. Many research results have shown that MSCs are involved in the regulation of tumor growth and metastasis through cell fusion. However, the role of cell fusion between MSCs and malignant cells in tumor growth and metastasis is still controversial. Several studies have demonstrated that MSCs can enhance malignant characteristics, promoting tumor growth and metastasis by fusing with malignant cells, while other conflicting reports believe that MSCs can reduce tumorigenicity upon fusion with malignant cells. In this review, we summarize the recent research on cell fusion events between MSCs and malignant cells in tumor growth and metastasis. The elucidation of the molecular mechanisms between MSC fusion and tumor metastasis may provide an effective strategy for tumor biotherapy.
Collapse
Affiliation(s)
- Li-Na Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Di-Di Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Lei Yang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yu-Xuan Gu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Qiu-Ping Zuo
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Hao-Yi Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jia Xu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Dian-Xin Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
18
|
Fusion of macrophages promotes breast cancer cell proliferation, migration and invasion through activating epithelial-mesenchymal transition and Wnt/β-catenin signaling pathway. Arch Biochem Biophys 2019; 676:108137. [PMID: 31605677 DOI: 10.1016/j.abb.2019.108137] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Cell fusion is a highly regulated process involved in cancer development, tissue regeneration and other physiological and pathological events. Many studies have shown that cancer cells can fuse with different types of cells such as mesenchymal stem cells (MSCs) and macrophages, which are behaved as two important fusogenic candidates in the tumor microenvironment. However, the underlying mechanisms of cell fusion between macrophages and malignant cells in cancer progression has not been fully clarified. The aim of the present study was to investigate the effects and mechanisms of cell fusion between macrophages and breast cancer cells on tumorigenesis and metastasis. Our results indicated that the hybrids exhibited enhanced proliferation, colony formation, migration and invasion capabilities, as well as suppressed apoptosis compared with parental breast cancer cells. Moreover, the hybrid cells displayed EMT with a significant downregulation of E-cadherin and upregulation of N-cadherin, Vimentin and Snail, as well as an obviously increased expression of MMP-2, MMP-9, uPA and S100A4. Mechanistically, we found that the TCF/LEF transcription factor activity of Wnt/β-catenin pathway and the expression of its downstream target genes including cyclin D1 and c-Myc were increased in the hybrid cells. Furthermore, our data confirmed that the promoting effects of fusion of macrophages on breast cancer cell proliferation, migration and invasion could be blocked by treatment with XAV-939, a Wnt/β-catenin signaling pathway inhibitor. In conclusion, our findings demonstrate that fusion of macrophages promotes proliferation, migration and invasion of breast cancer cells through activating EMT and Wnt/β-catenin signaling pathway. Our current study will further contribute to elucidate the mechanism of cell fusion in tumorigenesis and metastasis, and to develop a new therapeutic strategy for breast cancer treatment.
Collapse
|
19
|
Wannasarit S, Puttarak P, Kaewkroek K, Wiwattanapatapee R. Strategies for Improving Healing of the Gastric Epithelium Using Oral Solid Dispersions Loaded with Pentacyclic Triterpene-Rich Centella Extract. AAPS PharmSciTech 2019; 20:277. [PMID: 31396788 DOI: 10.1208/s12249-019-1488-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The pentacyclic triterpenoid compounds in Centella asiatica extract, mainly consisting of asiaticoside (AS), asiatic acid (AA), madecassoside (MS), and madecassic acid (MA), possess wound healing and anti-ulcer properties, but their low aqueous solubility and dissolution rate are disadvantageous for oral administration. In this study, pentacyclic triterpene-rich centella extract (PRE) was combined with Eudragit® EPO as a hydrophilic polymer using solvent evaporation to produce a solid dispersion (PRE-ESD). The optimum PRE/Eudragit ratio of 1:2 enhanced the solubility and dissolution of glycosides (AS > 3.5 folds, MS > 2 folds) and aglycones (AA > 65 folds and MA > 56 folds) in 0.1 N hydrochloric acid (pH 1.2). DSC, XRD, and FT-IR analysis showed that the four pentacyclic triterpenes in PRE existed in the amorphous state in the solid dispersion. Moreover, almost 100% of the compounds were released from the solid dispersion within 2 h. The effects of PRE-ESD on cell proliferation and wound healing in vitro were investigated in human gastric epithelial cell lines (AGS cells). Exposure to PRE-ESD (equivalent to PRE concentration of 10 μg/mL) promoted cell proliferation and enhanced 'wound closure' in the scratch assay of wound healing by 82% compared with non-treated groups. Unformulated MA and AA aglycones did not exhibit a wound healing effect. Moreover, PRE-ESD was found to accelerate wound closure compared with either AS or MS, indicating that the wound healing properties of PRE-ESD are conferred by the active compounds AS and MS that are presented in PRE.
Collapse
|
20
|
Tumor Microenvironment and Cell Fusion. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5013592. [PMID: 31380426 PMCID: PMC6657644 DOI: 10.1155/2019/5013592] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 12/14/2022]
Abstract
Cell fusion is a highly regulated biological process that occurs under both physiological and pathological conditions. The cellular and extracellular environment is critical for the induction of the cell-cell fusion. Aberrant cell fusion is initiated during tumor progression. Tumor microenvironment is a complex dynamic system formed by the interaction between tumor cells and their surrounding cells. Cell-cell fusion mediates direct interaction between tumor cells and their surrounding cells and is associated with tumor initiation and progression. Various microenvironmental factors affect cell fusion in tumor microenvironment and generate hybrids that acquire genomes of both parental cells and exhibit novel characteristics, such as tumor stem cell-like properties, radioresistance, drug resistance, immune evasion, and enhanced migration and invasion abilities, which are closely related to the initiation, invasion, and metastasis of tumor. The phenotypic characteristics of hybrids are based on the phenotypes of parental cells, and the fusion of tumor cells with diverse types of microenvironmental fusogenic cells is concomitant with phenotypic heterogeneity. This review highlights the types of fusogenic cells in tumor microenvironment that can fuse with tumor cells and their specific significance and summarizes the various microenvironmental factors affecting tumor cell fusion. This review may be used as a reference to develop strategies for future research on tumor cell fusion and the exploration of cell fusion-based antitumor therapies.
Collapse
|
21
|
Cui X, Jing X, Yi Q, Xiang Z, Tian J, Tan B, Zhu J. IL22 furthers malignant transformation of rat mesenchymal stem cells, possibly in association with IL22RA1/STAT3 signaling. Oncol Rep 2019; 41:2148-2158. [PMID: 30816520 PMCID: PMC6412447 DOI: 10.3892/or.2019.7007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) hold great promise as potential therapies for tumors through the delivery of various anticancer agents. However, exogenous tissue‑derived MSCs, such as those of bone marrow, have exhibited a tendency for malignant transformation in the tumor microenvironment. This issue remains controversial and is poorly understood. In the present study, the role of interleukin 22 (IL22)/IL22 receptor subunit α 1 (IL22RA1) and signal transducer and activator of transcription 3 (STAT3) signaling in the malignant transformation of MSCs was investigated. Following isolation of rat MSCs and their indirect co‑culture with C6 glioma cells, the transformed MSCs exhibited tumor cell characteristics. The Cancer Genome Atlas‑Glioblastoma Multiforme analysis revealed that primary and recurrent glioblastomas have increased IL22RA1 expression, compared with normal tissues, whereas the expression of IL22 was low in glioblastoma and normal tissues. mRNA and protein expression levels of IL22RA1 were significantly increased in the MSCs co‑cultured with C6 glioma cells. Furthermore, MSCs incubated with IL22 exhibited increased proliferation, migration and invasion. STAT3 demonstrated activation and nuclear translocation in the presence of IL22. Additionally, STAT3 small interfering RNA significantly inhibited the migration and invasion ability of MSCs, and the expression of the STAT3 downstream targets cyclin D1 and B‑cell lymphoma‑extra large under IL22 stimulation, indicating that IL22 also promoted MSC migration and invasion through STAT3 signaling. These data indicated that IL22 serves a critical role in the malignant transformation of rat MSCs, which is associated with an enhancement of the IL22RA1/STAT3 signaling pathway in the tumor microenvironment.
Collapse
Affiliation(s)
- Xiangrong Cui
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Qin Yi
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Zhongping Xiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Bin Tan
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jing Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
22
|
Weiler J, Dittmar T. Cell Fusion in Human Cancer: The Dark Matter Hypothesis. Cells 2019; 8:E132. [PMID: 30736482 PMCID: PMC6407028 DOI: 10.3390/cells8020132] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Current strategies to determine tumor × normal (TN)-hybrid cells among human cancer cells include the detection of hematopoietic markers and other mesodermal markers on tumor cells or the presence of donor DNA in cancer samples from patients who had previously received an allogenic bone marrow transplant. By doing so, several studies have demonstrated that TN-hybrid cells could be found in human cancers. However, a prerequisite of this cell fusion search strategy is that such markers are stably expressed by TN-hybrid cells over time. However, cell fusion is a potent inducer of genomic instability, and TN-hybrid cells may lose these cell fusion markers, thereby becoming indistinguishable from nonfused tumor cells. In addition, hybrid cells can evolve from homotypic fusion events between tumor cells or from heterotypic fusion events between tumor cells and normal cells possessing similar markers, which would also be indistinguishable from nonfused tumor cells. Such indistinguishable or invisible hybrid cells will be referred to as dark matter hybrids, which cannot as yet be detected and quantified, but which contribute to tumor growth and progression.
Collapse
Affiliation(s)
- Julian Weiler
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| | - Thomas Dittmar
- Chair of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany.
| |
Collapse
|
23
|
Jing A, Zhang C, Liang G, Feng W, Tian Z, Jing C. Hyaluronate-Functionalized Graphene for Label-Free Electrochemical Cytosensing. MICROMACHINES 2018; 9:E669. [PMID: 30567299 PMCID: PMC6315524 DOI: 10.3390/mi9120669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/15/2018] [Indexed: 12/15/2022]
Abstract
Electrochemical sensors for early tumor cell detection are currently an important area of research, as this special region directly improves the efficiency of cancer treatment. Functional graphene is a promising alternative for selective recognition and capture of target cancer cells. In our work, an effective cytosensor of hyaluronate-functionalized graphene (HG) was prepared through chemical reduction of graphene oxide. The as-prepared HG nanostructures were characterized with Fourier transform infrared spectroscopy and transmission electron microscopy coupled with cyclic voltammograms and electrochemical impedance spectroscopy, respectively. The self-assembly of HG with ethylene diamine, followed by sodium hyaluronate, enabled the fabrication of a label-free electrochemical impedance spectroscopy cytosensor with high stability and biocompatibility. Finally, the proposed cytosensor exhibited satisfying electrochemical behavior and cell-capture capacity for human colorectal cancer cells HCT-116, and also displayed a wide linear range, from 5.0 × 10² cells∙mL-1 to 5.0 × 10⁶ cells∙mL-1, and a low detection limit of 100 cells∙mL-1 (S/N = 3) for quantification. This work paves the way for graphene applications in electrochemical cytosensing and other bioassays.
Collapse
Affiliation(s)
- Aihua Jing
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Chunxin Zhang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Gaofeng Liang
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Wenpo Feng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Zhengshan Tian
- School of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China.
| | - Chenhuan Jing
- Pingdingshan No. 1 Middle School, Pingdingshan 467000, China.
| |
Collapse
|
24
|
Zhang LN, Kong CF, Zhao D, Cong XL, Wang SS, Ma L, Huang YH. Fusion with mesenchymal stem cells differentially affects tumorigenic and metastatic abilities of lung cancer cells. J Cell Physiol 2018; 234:3570-3582. [PMID: 30417342 DOI: 10.1002/jcp.27011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Cell fusion plays a crucial role in cancer progression and leads to massive aberrant changes in chromosome and gene expression involved in tumor metastasis. Cancer cells can fuse with many cell types, including stromal cells, epithelial cells, macrophages, and endothelial cells. Mesenchymal stem cells (MSCs) have been reported to migrate and incorporate into tumor sites during cancer progression. However, the underlying mechanism of stem cell fusion in tumor metastasis has not been fully deciphered. In this research, we established a cell fusion model between lung cancer cells and MSCs in vitro. We found that the hybrid cells showed enhanced metastatic capacity with increased expression of MMP-2 and MMP-9, whereas the proliferation ability was inhibited and cell cycle was blocked in the G0 /G1 phase with elevated expression of p21, p27, and p53. Moreover, the hybrid cells lost epithelial morphology and exhibited an epithelial-mesenchymal transition (EMT) change with downregulation of E-cadherin and upregulation of N-cadherin, Vimentin, α-SMA and Fibronectin1. Meanwhile, the expressions of EMT transcription factors, including Snail1, Slug, Twist1, Zeb1, and Zeb2, were also increased in hybrid cells. More important, the fusion hybrids acquired stem cell-like properties, which exhibited increased expression stem cell transcription factors Oct4, Sox2, Nanog, Kif4 as well as Bmi1. Taken together, our results suggested that cell fusion between lung cancer cells and MSCs offered enhanced metastatic capacity and characteristics of cancer stem cell by undergoing EMT. This study will contribute to explaning the origin of lung cancer stem cells and to elucidate the role of cell fusion in cancer metastasis.
Collapse
Affiliation(s)
- Li-Na Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Chen-Fei Kong
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Dan Zhao
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xian-Ling Cong
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Shen-Sen Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Ling Ma
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Ying-Hui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
25
|
Hypoxia Enhances Fusion of Oral Squamous Carcinoma Cells and Epithelial Cells Partly via the Epithelial-Mesenchymal Transition of Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5015203. [PMID: 29581976 PMCID: PMC5822897 DOI: 10.1155/2018/5015203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/03/2018] [Indexed: 01/06/2023]
Abstract
Increasing evidence and indications showed that cell fusion is crucial in tumor development and metastasis, and hypoxia, a closely linked factor to tumor microenvironment, which can lead to EMT, induces angiogenesis and metastasis in tumor growth. However, the relationship between hypoxia and fusion has not been reported yet. EMT will change some proteins in the epithelial cell surface and the changes of proteins in cell surface may increase cell fusion. This study found that hypoxia promotes the spontaneous cell fusion between Oral Squamous Carcinoma Cells (OSCCs) and Human Immortalized Oral Epithelial Cells (HIOECs). At the same time, Hypoxia can lead to EMT, and hypoxia-pretreated HIOECs increased fusion rate with OSCC, while the fusion rate was significantly reduced by DAPT, a kind of EMT blocker. Therefore, epithelial cells can increase spontaneously cell fusion with OSCC by EMT. Our study may provide a new insight to link among tumor microenvironment, cell fusion, and cancer.
Collapse
|
26
|
Tan B, Shen L, Yang K, Huang D, Li X, Li Y, Zhao L, Chen J, Yi Q, Xu H, Tian J, Zhu J. C6 glioma-conditioned medium induces malignant transformation of mesenchymal stem cells: Possible role of S100B/RAGE pathway. Biochem Biophys Res Commun 2017; 495:78-85. [PMID: 29050939 DOI: 10.1016/j.bbrc.2017.10.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have been widely studied as an attractive therapeutic agent for the treatment of tumors. However, the adverse effects of the tumor paracrine factors who affect MSCs are still unclear. In this study, we report for the first time that C6 glioma-conditioned medium (GCM) induces malignant transformation of MSCs. In contrast to MSCs, the transformed mesenchymal stem cells (TMCs) exhibited tumor cell characterizations in vitro and highly tumorigenic in vivo. Furthermore, GCM and recombinant S100B increased receptor for advanced glycation end products (RAGE) and its downstream Akt1, STAT3 genes expression as well as phosphorylation and transcriptional activation. Finally, blockage of S100B-RAGE interaction by RAGE inhibitor FPS-ZM1 attenuated GCM and S100B-induced Akt1, STAT3 activation, abolished its cell proliferation, migration and invasion actions. Together, these results suggest that the RAGE pathway may play a possible role in malignant transformation procedure of MSCs, and that this process may be mediated through S100B.
Collapse
Affiliation(s)
- Bin Tan
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Lianju Shen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
| | - Ke Yang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China
| | - Daochao Huang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Xin Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Yasha Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Li Zhao
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Jie Chen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Qing Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Hao Xu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Jie Tian
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Jing Zhu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.
| |
Collapse
|
27
|
Wang W, Li X, Wang F, Sun XY. Effect of TET1 regulating MGMT on chemotherapy resistance of oral squamous cell carcinoma stem cells. J Cell Biochem 2017. [PMID: 28643947 DOI: 10.1002/jcb.26236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The study was to evaluate the effect of ten-eleven translocation 1 (TET1) regulating o6-methylguanine-DNA methyltransferase (MGMT) in chemotherapy resistance of oral squamous cell carcinoma (OSCC) stem cells. OSCC stem cells were divided into the blank, negative control (NC), TET1-siRNA, TET1-siRNA + MGMT-OE, and MGMT-OE groups. Methylation-specific polymerase chain reaction (MSP), qRT-PCR and Western blotting were conducted to detect the methylation status of MGMT, expressions of TET1, MGMT, ABCG2, and Oct-4. Cell proliferation, cisplatin chemosensitivity, and cell cycle and apoptosis, were detected using CCK8 and flow cytometry. A chromatin immunoprecipitation (ChIP) assay was employed for detecting the link between TET1 and MGMT gene promoters. In comparison to the NC group, the TET1-siRNA group exhibited increased levels of MGMT methylation, the number of apoptotic cells and cisplatin chemosensitivity consisting of varying concentrations, however, decreased levels of mRNA and protein expressions of TET1 as well as MGMT, cell viability, the number of cells in the S phase, and protein expressions of ABCG2 and Oct-4 were all have diminished amounts. The TET1-siRNA + MGMT-OE and MGMT-OE groups had higher MGMT mRNA and protein expression, as well as increased protein expressions of ABCG2 and Oct-4, greater cell activity, higher number of cells in the S phase, decreased apoptotic rates in cells and decreased cisplatin chemosensitivity with different concentrations. Our study provided evidence that low-expression of TET1 in OSCC stem cells may stimulate MGMT promoter methylation, while inhibiting MGMT mRNA expression, this ultimately strengthens the sensitivity of OSCC stem cells in regards to chemotherapeutics.
Collapse
Affiliation(s)
- Wei Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Li
- Public Health College, Harbin Medical University, Harbin, China
| | - Fan Wang
- Public Health College, Harbin Medical University, Harbin, China
| | - Xiang-Yu Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Nwabo Kamdje AH, Kamga PT, Simo RT, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Goel RK, Amvene JM, Krampera M. Mesenchymal stromal cells' role in tumor microenvironment: involvement of signaling pathways. Cancer Biol Med 2017; 14:129-141. [PMID: 28607804 PMCID: PMC5444925 DOI: 10.20892/j.issn.2095-3941.2016.0033] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are adult multipotent stem cells residing as pericytes in various tissues and organs where they can differentiate into specialized cells to replace dying cells and damaged tissues. These cells are commonly found at injury sites and in tumors that are known to behave like " wounds that do not heal." In this article, we discuss the mechanisms of MSCs in migrating, homing, and repairing injured tissues. We also review a number of reports showing that tumor microenvironment triggers plasticity mechanisms in MSCs to induce malignant neoplastic tissue formation, maintenance, and chemoresistance, as well as tumor growth. The antitumor properties and therapeutic potential of MSCs are also discussed.
Collapse
Affiliation(s)
| | - Paul Takam Kamga
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | | | - Jean Marc Muller
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Giulio Bassi
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Erique Lukong
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Raghuveera Kumar Goel
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Jeremie Mbo Amvene
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Mauro Krampera
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| |
Collapse
|
29
|
Yan TL, Wang M, Xu Z, Huang CM, Zhou XC, Jiang EH, Zhao XP, Song Y, Song K, Shao Z, Liu K, Shang ZJ. Up-regulation of syncytin-1 contributes to TNF-α-enhanced fusion between OSCC and HUVECs partly via Wnt/β-catenin-dependent pathway. Sci Rep 2017; 7:40983. [PMID: 28112190 PMCID: PMC5256027 DOI: 10.1038/srep40983] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/13/2016] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence implies that cell fusion is one of the driving forces of cancer invasion and metastasis. However, considerably less is still known about the triggering factors and underlying mechanisms associated with cancer-host cell fusion, particularly in inflammatory tumor microenvironment. In this study, we confirmed that inflammatory factor TNF-α could enhance fusion between squamous cell carcinoma cells 9 (SCC-9) and human umbilical vein endothelial cells (HUVEC). Further study revealed that TNF-α could promote up-regulation of syncytin-1 in SCC-9 and its receptor neutral amino acid transporter type 2 (ASCT-2) in HUVEC. Syncytin-1 acted as an important downstream effector in TNF-α-enhanced cancer-endothelial cell fusion. TNF-α treatment also led to the activation of Wnt/β-catenin signal pathway in SCC-9. The activation of Wnt/β-catenin signal pathway was closely associated with the up-regulation of syncytin-1 in SCC-9 and increased fusion between SCC-9 and HUVEC while blocking of Wnt/β-catenin signal pathway resulted in the corresponding down-regulation of syncytin-1 accompanied by sharp decrease of cancer-endothelial cell fusion. Taking together, our results suggest that Wnt/β-catenin signal pathway activation-dependent up-regulation of syncytin-1 contributes to the pro-inflammatory factor TNF-α-enhanced fusion between oral squamous cell carcinoma cells and endothelial cells.
Collapse
Affiliation(s)
- Ting-Lin Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Meng Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Zhi Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Chun-Ming Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Xiao-Cheng Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Er-Hui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China
| | - Xiao-Ping Zhao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Song
- Department of Stomatology, Liuzhou People's Hospital, Guangxi, China
| | - Kai Song
- Department of Oral and Maxillofacial Surgery, The Affliated Hospital of Qingdao University, Qingdao, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China.,Department of Oromaxillofacial &Head NeckOncology, School &Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ke Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China.,Department of Oromaxillofacial &Head NeckOncology, School &Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zheng-Jun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory for Oral Biomedicine Ministry of Education, Wuhan University, Wuhan, China.,Department of Oromaxillofacial &Head NeckOncology, School &Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis. Sci Rep 2016; 6:36863. [PMID: 27827439 PMCID: PMC5101832 DOI: 10.1038/srep36863] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
Homotypic and heterotypic cell-to-cell fusion are key processes during development and tissue regeneration. Nevertheless, aberrant cell fusion can contribute to tumour initiation and metastasis. Additionally, a form of cell-in-cell structure called entosis has been observed in several human tumours. Here we investigate cell-to-cell interaction between mouse mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs). MSCs represent an important source of adult stem cells since they have great potential for regenerative medicine, even though they are also involved in cancer progression. We report that MSCs can either fuse forming heterokaryons, or be invaded by ESCs through entosis. While entosis-derived hybrids never share their genomes and induce degradation of the target cell, fusion-derived hybrids can convert into synkaryons. Importantly we show that hetero-to-synkaryon transition occurs through cell division and not by nuclear membrane fusion. Additionally, we also observe that the ROCK-actin/myosin pathway is required for both fusion and entosis in ESCs but only for entosis in MSCs. Overall, we show that MSCs can undergo fusion or entosis in culture by generating distinct functional cellular entities. These two processes are profoundly different and their outcomes should be considered given the beneficial or possible detrimental effects of MSC-based therapeutic applications.
Collapse
|
31
|
Melanoma-Derived BRAF(V600E) Mutation in Peritumoral Stromal Cells: Implications for in Vivo Cell Fusion. Int J Mol Sci 2016; 17:ijms17060980. [PMID: 27338362 PMCID: PMC4926511 DOI: 10.3390/ijms17060980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Melanoma often recurs in patients after the removal of the primary tumor, suggesting the presence of recurrent tumor-initiating cells that are undetectable using standard diagnostic methods. As cell fusion has been implicated to facilitate the alteration of a cell's phenotype, we hypothesized that cells in the peritumoral stroma having a stromal phenotype that initiate recurrent tumors might originate from the fusion of tumor and stromal cells. Here, we show that in patients with BRAF(V600E) melanoma, melanoma antigen recognized by T-cells (MART1)-negative peritumoral stromal cells express BRAF(V600E) protein. To confirm the presence of the oncogene at the genetic level, peritumoral stromal cells were microdissected and screened for the presence of BRAF(V600E) with a mutation-specific polymerase chain reaction. Interestingly, cells carrying the BRAF(V600E) mutation were not only found among cells surrounding the primary tumor but were also present in the stroma of melanoma metastases as well as in a histologically tumor-free re-excision sample from a patient who subsequently developed a local recurrence. We did not detect any BRAF(V600E) mutation or protein in the peritumoral stroma of BRAF(WT) melanoma. Therefore, our results suggest that peritumoral stromal cells contain melanoma-derived oncogenic information, potentially as a result of cell fusion. These hybrid cells display the phenotype of stromal cells and are therefore undetectable using routine histological assessments. Our results highlight the importance of genetic analyses and the application of mutation-specific antibodies in the identification of potentially recurrent-tumor-initiating cells, which may help better predict patient survival and disease outcome.
Collapse
|
32
|
Fried S, Tosun S, Troost G, Keil S, Zaenker KS, Dittmar T. Lipopolysaccharide (LPS) Promotes Apoptosis in Human Breast Epithelial × Breast Cancer Hybrids, but Not in Parental Cells. PLoS One 2016; 11:e0148438. [PMID: 26863029 PMCID: PMC4749126 DOI: 10.1371/journal.pone.0148438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/18/2016] [Indexed: 01/03/2023] Open
Abstract
Toll-like receptors (TLRs) belong to the group of pathogen recognition receptors known to play a crucial role in the innate immune system. In cancer, TLR expression is still debated controversially due to contradictory results reporting that both induction of apoptosis as well as tumor progression could depend on TLR signaling, whereby recent data rather indicate a pro-tumorigenic effect. The biological phenomenon of cell fusion has been associated with cancer progression due to findings revealing that fusion-derived hybrid cells could exhibit properties like an increased metastatogenic capacity and an increased drug resistance. Thus, M13MDA435 hybrid cell lines, which derived from spontaneous fusion events between human M13SV1-EGFP-Neo breast epithelial cells and human MDA-MB-435-Hyg breast cancer cells, were investigated. Cultivation of cells in the presence of the TLR4 ligand LPS potently induced apoptosis in all hybrid clones, but not in parental cells, which was most likely attributed to differential kinetics of the TLR4 signal transduction cascade. Activation of this pathway concomitant with NF-κB nuclear translocation and TNF-α expression was solely observed in hybrid cells. However, induction of LPS mediated apoptosis was not TNF-α dependent since TNF-α neutralization was not correlated to a decreased amount of dead cells. In addition to TNF-α, LPS also caused IFN-β expression in hybrid clones 1 and 3. Interestingly, hybrid clones differ in the mode of LPS induced apoptosis. While neutralization of IFN-β was sufficient to impair the LPS induced apoptosis in M13MDA435-1 and -3 hybrids, the amount of apoptotic M13MDA435-2 and -4 hybrid cells remained unchanged in the presence of neutralizing IFN-β antibodies. In summary, the fusion of non-LPS susceptible parental human breast epithelial cells and human breast cancer cells gave rise to LPS susceptible hybrid cells, which is in view with the cell fusion hypothesis that hybrid cells could exhibit novel properties.
Collapse
Affiliation(s)
- Sabrina Fried
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
| | - Songuel Tosun
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
| | - Gabriele Troost
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
| | - Silvia Keil
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
| | - Kurt S. Zaenker
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology & Experimental Oncology, Center for Biomedical Education and Research, Witten/Herdecke University, Stockumer Str. 10, Witten, Germany
- * E-mail:
| |
Collapse
|
33
|
Huang L, Wu RL, Xu AM. Epithelial-mesenchymal transition in gastric cancer. Am J Transl Res 2015; 7:2141-2158. [PMID: 26807164 PMCID: PMC4697696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide with poor prognosis for lack of early detection and effective treatment modalities. The significant influence of tumor microenvironment on malignant cells has been extensively investigated in this targeted-therapy era. Epithelial-mesenchymal transition (EMT) is a highly conserved and fundamental process that is critical for embryogenesis and some other pathophysiological processes, especially tumor genesis and progression. Aberrant gastric EMT activation could endow gastric epithelial cells with increased mesenchymal characteristics and less epithelial features, and promote cancer cell stemness, initiation, invasion, metastasis, and chemo-resistance with cellular adhesion molecules especially E-cadherin concomitantly repressed, which allows tumor cells to disseminate and spread throughout the body. Some pathogens, stress, and hypoxia could induce and aggravate GC via EMT, which is significantly correlated with prognosis. GC EMT is modulated by diverse micro-environmental, membrane, and intracellular cues, and could be triggered by various overexpressed transcription factors, which are downstream of several vital cross-talking signaling pathways including TGF-β, Wnt/β-catenin, Notch, etc. microRNAs also contribute significantly to GC EMT modulation. There are currently some agents which could suppress GC EMT, shedding light on novel anti-malignancy strategies. Investigating potential mechanisms modulating GC cell EMT and discovering novel EMT regulators will further elucidate GC biology, and may provide new biomarkers for early GC detection and potentially efficient targets for preventative and curative anti-GC intervention approaches to prevent local and distant invasions.
Collapse
Affiliation(s)
- Lei Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei, China
- Research Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty of Mannheim, Heidelberg UniversityMannheim, Germany
| | - Ruo-Lin Wu
- Research Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty of Mannheim, Heidelberg UniversityMannheim, Germany
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei, China
| | - A-Man Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei, China
| |
Collapse
|
34
|
Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness. BMC Cancer 2015; 15:793. [PMID: 26498753 PMCID: PMC4620013 DOI: 10.1186/s12885-015-1780-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Emerging evidence indicates that inappropriate cell-cell fusion might contribute to cancer progression. Similarly, mesenchymal stem cells (MSCs) can also fuse with other cells spontaneously and capable of adopting the phenotype of other cells. The aim of our study was to investigate the role of MSCs participated cell fusion in the tumorigenesis of gastric cancer. METHODS We fused human umbilical cord mesenchymal stem cells (hucMSCs) with gastric cancer cells in vitro by polyethylene glycol (PEG), the hybrid cells were sorted by flow cytometer. The growth and migration of hybrids were assessed by cell counting, cell colony formation and transwell assays. The proteins and genes related to epithelial- mesenchymal transition and stemness were tested by western blot, immunocytochemistry and real-time RT-PCR. The expression of CD44 and CD133 was examined by immunocytochemistry and flow cytometry. The xenograft assay was used to evaluation the tumorigenesis of the hybrids. RESULTS The obtained hybrids exhibited epithelial- mesenchymal transition (EMT) change with down-regulation of E-cadherin and up-regulation of Vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and fibroblast activation protein (FAP). The hybrids also increased expression of stemness factors Oct4, Nanog, Sox2 and Lin28. The expression of CD44 and CD133 on hybrid cells was stronger than parental gastric cancer cells. Moreover, the migration and proliferation of heterotypic hybrids were enhanced. In addition, the heterotypic hybrids promoted the growth abilities of gastric xenograft tumor in vivo. CONCLUSIONS Taken together, our results suggest that cell fusion between hucMSCs and gastric cancer cells could contribute to tumorigenic hybrids with EMT and stem cell-like properties, which may provide a flexible tool for investigating the roles of MSCs in gastric cancer.
Collapse
|
35
|
DAI XINGLIANG, CHEN HUA, CHEN YANMING, WU JINDING, WANG HAIYANG, SHI JIA, FEI XIFENG, WANG ZHIMIN, WANG AIDONG, DONG JUN, LAN QING, HUANG QIANG. Malignant transformation of host stromal fibroblasts derived from the bone marrow traced in a dual-color fluorescence xenograft tumor model. Oncol Rep 2015; 34:2997-3006. [DOI: 10.3892/or.2015.4281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/03/2015] [Indexed: 11/06/2022] Open
|