1
|
Zhu J, Zheng Z, Yin Z, Ding L, Li C, Wang X, Shu P, Zhou J, Liu W, Liu J. MiR-146b overexpression promotes bladder cancer cell growth via the SMAD4/C-MYC/Cyclin D1 axis. Front Oncol 2025; 15:1565638. [PMID: 40224178 PMCID: PMC11985428 DOI: 10.3389/fonc.2025.1565638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025] Open
Abstract
MiR-146b has been identified as being overexpressed in human bladder cancer (BCa) and implicated in promoting cancer cell invasion. However, its specific involvement in BCa cell growth remains unclear. In this study, we demonstrate that the downregulation of miR-146b significantly suppresses tumorigenic growth of human BCa cells both in vitro and in vivo by inducing G0/G1 cell cycle arrest. Specifically, miR-146b inhibition resulted in a significant reduction in colony formation (p < 0.05) and anchorage-independent growth in both UMUC3 and T24T cells, as measured by soft agar assays, with three independent replicates for each experiment. Notably, Cyclin D1 protein plays a crucial role in miR-146b-induced BCa cell proliferation, as confirmed by Western blotting (p < 0.05), with each experiment performed in triplicate. Mechanistic investigations reveal that miR-146b reduces mothers against decapentaplegic homolog 4 (SMAD4) mRNA stability by directly binding to its 3' untranslated region (3'-UTR), leading to decreased SMAD4 expression. This reduction in SMAD4 levels promotes cellular myelocytomatosis (C-MYC) transcription, which in turn enhances Cyclin D1 transcription, ultimately facilitating BCa cell proliferation. The findings unveil a novel regulatory axis involving SMAD4/C-MYC/Cyclin D1 in mediating the oncogenic role of miR-146b in BCa cells. Statistical significance was determined using Student's t-test, with p-values <0.05 considered significant. Together with its previously established function in BCa invasion, the results highlight the potential for developing miR-146b-based therapeutic strategies for treating human BCa patients.
Collapse
Affiliation(s)
- Junlan Zhu
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Zhijian Zheng
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zhangya Yin
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Linchao Ding
- Department of Scientific Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Congya Li
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Xuyao Wang
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Peng Shu
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Jun Zhou
- Department of Urology, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Weihua Liu
- Department of Urology, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| | - Jian Liu
- Precision Medicine Laboratory, Beilun People’s Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Shekhar R, Kumari S, Vergish S, Tripathi P. The crosstalk between miRNAs and signaling pathways in human cancers: Potential therapeutic implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:133-165. [PMID: 38782498 DOI: 10.1016/bs.ircmb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components. Aberrant expression of miRNAs can either promote or suppress key signaling events, influencing critical cellular processes such as proliferation, apoptosis, angiogenesis, and metastasis. For example, oncogenic miRNAs often promote cancer progression by targeting tumor suppressors or negative regulators of signaling pathways, thereby enhancing pathway activity. Conversely, tumor-suppressive miRNAs frequently inhibit oncogenic signaling by targeting key components within these pathways. This complex regulatory crosstalk underscores the significance of miRNAs as central players in shaping the signaling landscape of cancer cells. Furthermore, the therapeutic implications of targeting miRNAs in cancer are substantial. miRNAs can be manipulated to restore normal signaling pathway activity, offering a potential avenue for precision medicine. The development of miRNA-based therapeutics, including synthetic miRNA mimics and miRNA inhibitors, has shown promise in preclinical and clinical studies. These strategies aim to either enhance the activity of tumor-suppressive miRNAs or inhibit the function of oncogenic miRNAs, thereby restoring balanced signaling and impeding cancer progression. In conclusion, the crosstalk between miRNAs and signaling pathways in human cancers is a dynamic and influential aspect of cancer biology. Understanding this interplay provides valuable insights into cancer development and progression. Harnessing the therapeutic potential of miRNAs as regulators of signaling pathways opens up exciting opportunities for the development of innovative cancer treatments with the potential to improve patient outcomes. In this chapter, we provide an overview of the crosstalk between miRNAs and signaling pathways in the context of cancer and highlight the potential therapeutic implications of targeting this regulatory interplay.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| | - Sujata Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Satyam Vergish
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
3
|
Hashemi M, Nazdari N, Gholamiyan G, Paskeh MDA, Jafari AM, Nemati F, Khodaei E, Abyari G, Behdadfar N, Raei B, Raesi R, Nabavi N, Hu P, Rashidi M, Taheriazam A, Entezari M. EZH2 as a potential therapeutic target for gastrointestinal cancers. Pathol Res Pract 2024; 253:154988. [PMID: 38118215 DOI: 10.1016/j.prp.2023.154988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
Gastrointestinal (GI) cancers continue to be a major cause of mortality and morbidity globally. Understanding the molecular pathways associated with cancer progression and severity is essential for creating effective cancer treatments. In cancer research, there is a notable emphasis on Enhancer of zeste homolog 2 (EZH2), a key player in gene expression influenced by its irregular expression and capacity to attach to promoters and alter methylation status. This review explores the impact of EZH2 signaling on various GI cancers, such as colorectal, gastric, pancreatic, hepatocellular, esophageal, and cholangiocarcinoma. The primary function of EZH2 signaling is to facilitate the accelerated progression of cancer cells. Additionally, EZH2 has the capacity to modulate the reaction of GI cancers to chemotherapy and radiotherapy. Numerous pathways, including long non-coding RNAs and microRNAs, serve as upstream regulators of EZH2 in these types of cancer. EZH2's enzymatic activity enables it to attach to target gene promoters, resulting in methylation that modifies their expression. EZH2 could be considered as an independent prognostic factor, with increased expression correlating with a worse disease prognosis. Additionally, a range of gene therapies including small interfering RNA, and anti-tumor agents are being explored to target EZH2 for cancer treatment. This comprehensive review underscores the current insights into EZH2 signaling in gastrointestinal cancers and examines the prospect of therapies targeting EZH2 to enhance patient outcomes.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Naghmeh Nazdari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fateme Nemati
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Khodaei
- Department of Dermatology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Abyari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Behdadfar
- Young Researchers and Elite Club, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Peng Hu
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Silveira DA, Gupta S, da Cunha Jaeger M, Brunetto de Farias C, Mombach JCM, Sinigaglia M. A logical model of Ewing sarcoma cell epithelial-to-mesenchymal transition supports the existence of hybrid cellular phenotypes. FEBS Lett 2023; 597:2446-2460. [PMID: 37597508 DOI: 10.1002/1873-3468.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/21/2023]
Abstract
Ewing sarcoma (ES) is a highly aggressive pediatric tumor driven by the RNA-binding protein EWS (EWS)/friend leukemia integration 1 transcription factor (FLI1) chimeric transcription factor, which is involved in epithelial-mesenchymal transition (EMT). EMT stabilizes a hybrid cell state, boosting metastatic potential and drug resistance. Nevertheless, the mechanisms underlying the maintenance of this hybrid phenotype in ES remain elusive. Our study proposes a logical EMT model for ES, highlighting zinc finger E-box-binding homeobox 2 (ZEB2), miR-145, and miR-200 circuits that maintain hybrid states. The model aligns with experimental findings and reveals a previously unknown circuit supporting the mesenchymal phenotype. These insights emphasize the role of ZEB2 in the maintenance of the hybrid state in ES.
Collapse
Affiliation(s)
- Daner A Silveira
- Children's Cancer Institute, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, Brazil
| | | | - Mariane da Cunha Jaeger
- Children's Cancer Institute, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, Brazil
| | - Caroline Brunetto de Farias
- Children's Cancer Institute, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, Brazil
| | | | - Marialva Sinigaglia
- Children's Cancer Institute, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, Brazil
| |
Collapse
|
5
|
Hassel KR, Brito-Estrada O, Makarewich CA. Microproteins: Overlooked regulators of physiology and disease. iScience 2023; 26:106781. [PMID: 37213226 PMCID: PMC10199267 DOI: 10.1016/j.isci.2023.106781] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Ongoing efforts to generate a complete and accurate annotation of the genome have revealed a significant blind spot for small proteins (<100 amino acids) originating from short open reading frames (sORFs). The recent discovery of numerous sORF-encoded proteins, termed microproteins, that play diverse roles in critical cellular processes has ignited the field of microprotein biology. Large-scale efforts are currently underway to identify sORF-encoded microproteins in diverse cell-types and tissues and specialized methods and tools have been developed to aid in their discovery, validation, and functional characterization. Microproteins that have been identified thus far play important roles in fundamental processes including ion transport, oxidative phosphorylation, and stress signaling. In this review, we discuss the optimized tools available for microprotein discovery and validation, summarize the biological functions of numerous microproteins, outline the promise for developing microproteins as therapeutic targets, and look forward to the future of the field of microprotein biology.
Collapse
Affiliation(s)
- Keira R. Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Omar Brito-Estrada
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Catherine A. Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Zhao X, Yi Y, Jiang C, Huang X, Wen X, Liao H, Zhu Y, Liu Y, Li N, Pan D. Gancao Fuzi decoction regulates the Th17/Treg cell imbalance in rheumatoid arthritis by targeting Foxp3 via miR-34a. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115837. [PMID: 36252875 DOI: 10.1016/j.jep.2022.115837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE During the Eastern Han Dynasty, Zhang Zhongjing first recorded the Gancao Fuzi decoction (GCFZD) formula in the "Synopsis of the Golden Chamber", which is reportedly an effective and safe treatment for rheumatoid arthritis (RA). However, the mechanism underlying the observed improvement in the T helper 17 (Th17)/regulatory T (Treg) cell imbalance in RA obtained with GCFZD has not been reported. AIM OF THE STUDY This study aimed to demonstrate whether GCFZD ameliorated RA by modulating the Th17/Treg imbalance in RA mice. MATERIALS AND METHODS Collagen was used to induce a model of collagen-induced arthritis (CIA) in mice. GCFZD was administered by gavage, and the arthritis index score, imaging and histopathological changes of the ankle joints, and the levels of the immunoglobulin G (IgG) class antibodies and proinflammatory factors in serum were determined. In addition, the frequencies of Th17 and Treg cells, the levels of relevant transcription factors and functional factors and the miR-34a gene in the spleen and the levels of interleukin-17A (IL-17A) and IL-10 in serum were determined. RESULTS GCFZD significantly reduced the arthritis score, improved joint swelling and bone damage, reduced the pathological score, and decreased the serum levels of IgG class antibody (IgG and IgG2a) and proinflammatory factor [tumour necrosis factor-alpha (TNF-α), IL-1β and IL-6]. Moreover, the Th17-cell proportion, the expression level of the Th17-specific transcription factor retinoic acid-related orphan receptor γt (RORγt) and functional factor IL-17A in the spleen, and the serum IL-17A level were decreased, whereas the Treg cell proportion, expression levels of the Treg-specific transcription factor forkhead box P3 (Foxp3) and functional factor IL-10 in the spleen, and the serum IL-10 level were increased. Furthermore, GCFZD inhibited miR-34a gene expression while promoting Foxp3 protein expression. CONCLUSIONS The findings of this study demonstrate the therapeutic effect of GCFZD on mice with CIA, and the mechanism is related to an improvement in the Th17/Treg cell imbalance by targeting Foxp3 via miR-34a.
Collapse
Affiliation(s)
- Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Xintao Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Xiaomin Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Huajun Liao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Nan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong Province, China.
| | - Dongmei Pan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Fan L, He M, Mo W, Yao Q, He M, Jiang J. miR-204-5p Inhibits the Proliferation and Differentiation of Fetal Neural Stem Cells by Targeting Wingless-Related MMTV Integration Site 2 to Regulate the Ephrin-A2/EphA7 Pathway. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is mainly resulted from perinatal asphyxia, which can be repaired by NSCs. miR-204-5p is claimed to impact the activity NSCs. Our research will probe the miR-204-5p function in oxygen-glucose deprivation (OGD)-treated NSCs. miR-204-5p level
was enhanced and WNT2 level was reduced in HIE rats. Rat NSCs were stimulated with OGD condition under the managing of mimic or inhibitor of miR-204-5p. The declined cell viability, enhanced apoptosis, downregulated Tuj1 and GFAP levels, and shortened total neurite length were observed in
OGD-treated NSCs, which were further aggravated by the mimic and rescued by the inhibitor of miR-204-5p. Furthermore, the inactivated WNT2 and Ephrin-A2/EphA7 signaling pathway in OGD-stimulated NSCs was further repressed by the mimic and rescued by the inhibitor of miR-204-5p. In addition,
WNT2 was confirmed as the targeting of miR-204-5p. Lastly, the function of miR-204-5p mimic on the proliferation, apoptosis, differentiation, WNT2 and Ephrin-A2/EphA7 signaling pathway in OGD-stimulated NSCs was abolished by HLY78, an activator of Wnt signaling. Collectively, miR-204-5p repressed
the growth and differentiation of fetal NSCs by targeting WNT2 to regulate the Ephrin-A2/EphA7 pathway.
Collapse
|
8
|
Brown ZJ, Patwardhan S, Bean J, Pawlik TM. Molecular diagnostics and biomarkers in cholangiocarcinoma. Surg Oncol 2022; 44:101851. [PMID: 36126350 DOI: 10.1016/j.suronc.2022.101851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Regardless of anatomic origin, cholangiocarcinoma is generally an aggressive malignancy with a relatively high case fatality. Surgical resection with curative intent remains the best opportunity to achieve meaningful long-term survival. Most patients present, however, with advanced disease and less than 20% of patients are candidates for surgical resection. Unfortunately, even patients who undergo resection have a 5-year survival that ranges from 20 to 40%. Biomarkers are indicators of normal, pathologic, or biologic responses to an intervention and can range from a characteristic (i.e., blood pressure reading which can detect hypertension) to specific genetic mutations or proteins (i.e., carcinoembryonic antigen level). Novel biomarkers and improved molecular diagnostics represent an attractive opportunity to improve detection as well as to identify novel therapeutic targets for patients with cholangiocarcinoma. We herein review the latest advances in molecular diagnostics and biomarkers related to the early detection and treatment of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Zachary J Brown
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| | - Satyajit Patwardhan
- Dept of HPB Surgery and Liver Transplantation, Global Hospital, Mumbai, India
| | - Joal Bean
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The State Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
9
|
A miR-34a-guided, tRNA iMet-derived, piR_019752-like fragment (tRiMetF31) suppresses migration and angiogenesis of breast cancer cells via targeting PFKFB3. Cell Death Dis 2022; 8:355. [PMID: 35961977 PMCID: PMC9374763 DOI: 10.1038/s41420-022-01054-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/01/2022]
Abstract
Although we recently demonstrated that miR-34a directly targets tRNAiMet precursors via Argonaute 2 (AGO2)-mediated cleavage, consequently attenuating the proliferation of breast cancer cells, whether tRNAiMet fragments derived from this cleavage influence breast tumor angiogenesis remains unknown. Here, using small-RNA-Seq, we identified a tRNAiMet-derived, piR_019752-like 31-nt fragment tRiMetF31 in breast cancer cells expressing miR-34a. Bioinformatic analysis predicted 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) as a potential target of tRiMrtF31, which was validated by luciferase assay. tRiMetF31 was downregulated, whereas PFKFB3 was overexpressed in cancer cell lines. Overexpression of tRiMetF31 profoundly inhibited the migration and angiogenesis of two breast cancer cell lines while slightly inducing apoptosis. Conversely, knockdown of tRiMetF31 restored PFKFB3-driven angiogenesis. miR-34a was downregulated, whereas tRNAiMet and PFKFB3 were upregulated in breast cancer, and elevated PFKFB3 significantly correlated with metastasis. Our findings demonstrate that tRiMetF31 profoundly suppresses angiogenesis by silencing PFKFB3, presenting a novel target for therapeutic intervention in breast cancer.
Collapse
|
10
|
Prediction of CIAPIN1 (Cytokine-Induced Apoptosis Inhibitor 1) Signaling Pathway and Its Role in Cholangiocarcinoma Metastasis. J Clin Med 2022; 11:jcm11133826. [PMID: 35807116 PMCID: PMC9267148 DOI: 10.3390/jcm11133826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Cholangiocarcinoma (CCA), a malignancy of the biliary epithelium, can arise at any point in the biliary system. We previously reported that CIAPIN1 is detectable in the sera and that its overexpression was associated with poor prognosis and metastasis of CCA patients. In this study, we investigated further its expression in CCA tissues, biological functions, and related signaling pathways in CCA cells. First, we examined CIAPIN1 expression in CCA tissues of 39 CCA patients using immunohistochemistry (IHC). Then, CIAPIN1-related proteins expressed in CCA cells were identified using RNA interference (siRNA) and liquid chromatography–mass spectrometry (LC–MS/MS). To predict the functions and signaling pathways of CIAPIN1 in CCA cells, the identified proteins were analyzed using bioinformatics tools. Then, to validate the biological functions of CIAPIN1 in the CCA cell line, transwell migration/invasion assays were used. CIAPIN1 was overexpressed in CCA tissues compared with adjacent noncancerous tissues. Its overexpression was correlated with lymph node metastasis. Bioinformatic analyses predicted that CIAPIN1 is connected to the TGF-β/SMADs signaling pathway via nitric oxide synthase 1 (NOS1) and is involved in the metastasis of CCA cells. In fact, cell migration and invasion activities of the KKU-100 CCA cell line were significantly suppressed by CIAPIN1 gene silencing. Our results unravel its novel function and potential signaling pathway in metastasis of CCA cells. CIAPIN1 can be a poor prognostic factor and can be a promising target molecule for CCA chemotherapy.
Collapse
|
11
|
Gao X, Zhong Y, Li K, Miao A, Chen N, Ding R, Xu Y, Chen J. Toxoplasma gondii promotes microRNA-34a to inhibit Foxp3 expression in adverse outcomes of pregnancy in mice. Int Immunopharmacol 2022; 107:108648. [DOI: 10.1016/j.intimp.2022.108648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 01/15/2023]
|
12
|
MicroRNA Expression in Clear Cell Renal Cell Carcinoma Cell Lines and Tumor Biopsies: Potential Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23105604. [PMID: 35628416 PMCID: PMC9147802 DOI: 10.3390/ijms23105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
This study was carried out to quantitate the expression levels of microRNA-17, -19a, -34a, -155, and -210 (miRs) expressed in nine clear cell renal cell carcinoma (ccRCC) and one chromophobe renal cell carcinoma cell line with and without sarcomatoid differentiation, and in six primary kidney tumors with matching normal kidney tissues. The data in the five non-sarcomatoid ccRCC cell lines-RC2, CAKI-1, 786-0, RCC4, and RCC4/VHL-and in the four ccRCC with sarcomatoid differentiation-RCJ41T1, RCJ41T2, RCJ41M, and UOK-127-indicated that miR-17 and -19a were expressed at lower levels relative to miR-34a, -155, and -210. Compared with RPTEC normal epithelial cells, miR-34a, miR-155, and miR-210 were expressed at higher levels, independent of the sarcomatoid differentiation status and hypoxia-inducible factors 1α and 2α (HIFs) isoform expression. In the one chromophobe renal cell carcinoma cell line, namely, UOK-276 with sarcomatoid differentiation, and expressing tumor suppressor gene TP53, miR-34a, which is a tumor suppressor gene, was expressed at higher levels than miR-210, -155, -17, and -19a. The pilot results generated in six tumor biopsies with matching normal kidney tissues indicated that while the expression of miR-17 and -19a were similar to the normal tissue expression profile, miR-210, -155, -and 34a were expressed at a higher level. To confirm that differences in the expression levels of the five miRs in the six tumor biopsies were statistically significant, the acquisition of a larger sample size is required. Data previously generated in ccRCC cell lines demonstrating that miR-210, miR-155, and HIFs are druggable targets using a defined dose and schedule of selenium-containing molecules support the concept that simultaneous and concurrent downregulation of miR-210, miR-155, and HIFs, which regulate target genes associated with increased tumor angiogenesis and drug resistance, may offer the potential for the development of a novel mechanism-based strategy for the treatment of patients with advanced ccRCC.
Collapse
|
13
|
Pavicevic S, Reichelt S, Uluk D, Lurje I, Engelmann C, Modest DP, Pelzer U, Krenzien F, Raschzok N, Benzing C, Sauer IM, Stintzing S, Tacke F, Schöning W, Schmelzle M, Pratschke J, Lurje G. Prognostic and Predictive Molecular Markers in Cholangiocarcinoma. Cancers (Basel) 2022; 14:1026. [PMID: 35205774 PMCID: PMC8870611 DOI: 10.3390/cancers14041026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer and subsumes a heterogeneous group of malignant tumors arising from the intra- or extrahepatic biliary tract epithelium. A rising mortality from CCA has been reported worldwide during the last decade, despite significant improvement of surgical and palliative treatment. Over 50% of CCAs originate from proximal extrahepatic bile ducts and constitute the most common CCA entity in the Western world. Clinicopathological characteristics such as lymph node status and poor differentiation remain the best-studied, but imperfect prognostic factors. The identification of prognostic molecular markers as an adjunct to traditional staging systems may not only facilitate the selection of patients who would benefit the most from surgical, adjuvant or palliative treatment strategies, but may also be helpful in defining the aggressiveness of the disease and identifying patients at high-risk for tumor recurrence. The purpose of this review is to provide an overview of currently known molecular prognostic and predictive markers and their role in CCA.
Collapse
Affiliation(s)
- Sandra Pavicevic
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sophie Reichelt
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Isabella Lurje
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Cornelius Engelmann
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Dominik P. Modest
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Uwe Pelzer
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Christian Benzing
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Igor M. Sauer
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Sebastian Stintzing
- Department of Hematology, Oncology and Cancer Immunology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (D.P.M.); (U.P.); (S.S.)
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (I.L.); (C.E.); (F.T.)
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Moritz Schmelzle
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (S.P.); (S.R.); (D.U.); (F.K.); (N.R.); (C.B.); (I.M.S.); (W.S.); (M.S.); (J.P.)
| |
Collapse
|
14
|
Uchihata Y, Arihiro K, Kaneko Y, Shimizu T, Marubashi Y, Aoki C, Murakami T, Ochi M, Niihara N, Ohtsuka K, Unehara R, Araki Y, Seki Y, Mori K, Oda M, Ishida K. Analysis of MicroRNA in Bile Cytologic Samples Is Useful for Detection and Diagnosis of Extrahepatic Cholangiocarcinoma. Am J Clin Pathol 2022; 158:122-131. [PMID: 35157005 DOI: 10.1093/ajcp/aqac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES This study aimed to develop reliable biomarkers that improve the ability of bile cytology to diagnose cholangiocarcinoma vs benign biliary lesions. METHODS Many studies indicate that microRNAs (miRNAs) are potential candidates for the early diagnosis of cancer. We analyzed the expression of five tumor-associated miRNAs (miR-31-5p, miR-122-5p, miR-378d, miR-182-5p, and miR-92a-3p) in cytology samples using quantitative reverse transcription polymerase chain reaction. We collected 52 surgically resected tissue samples, 84 cytologic specimens from smears (53 cases of cancer and 31 cases of noncancer), and 40 residual sediments after smearing for routine cytology at Hiroshima University Hospital. RESULTS The expression of miR-31-5p, miR-378d, and miR-122-5p was significantly higher in cancer tissues than those in normal tissues, while miR-182-5p expression was lower. The expression of miR-31-5p, miR-378d, miR-182-5p, and miR-92a-3p was significantly higher in detached cell samples from smears of cholangiocarcinoma cases than in those from noncancer cases. CONCLUSIONS These results suggest that the analysis of miRNAs in bile cytologic specimens is a promising auxiliary tool for distinguishing cholangiocarcinoma from benign biliary lesions.
Collapse
Affiliation(s)
- Yukari Uchihata
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yoshie Kaneko
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Tomomi Shimizu
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yukari Marubashi
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Chie Aoki
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takuya Murakami
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Mayu Ochi
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Nanaka Niihara
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kohei Ohtsuka
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Rimu Unehara
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yusuke Araki
- Department of Molecular and Internal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoshinaga Seki
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Keiichi Mori
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Miyo Oda
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Katsunari Ishida
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
15
|
Han Y, Yang Y, Huang S, Yao L, Wu L. The miR-34a/WNT7B modulates the sensitivity of cholangiocarcinoma cells to p53-mediated photodynamic therapy toxicity. Biochem Biophys Res Commun 2021; 591:54-61. [PMID: 34999254 DOI: 10.1016/j.bbrc.2021.12.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/19/2021] [Indexed: 01/07/2023]
Abstract
Photodynamic therapy (PDT) provides apparent survival benefits for unresectable cholangiocarcinoma patients. the insufficient sensitivity of cancer cell to PDT treatment limits the clinical application. In this study, according to the GEO datasets, WNT7B expression was decreased by PDT treatment in cholangiocarcinoma samples. In cholangiocarcinoma cells, PDT treatment inhibited Wnt signaling, suppressed cell viability, and enhanced cell apoptosis. Within cholangiocarcinoma cells, PDT treatment induced p53 and miR-34a-5p expression. Under PDT treatment, p53 knockdown downregulated miR-34a-5p expression, whereas the inhibition effect of p53 knockdown on miR-34a-5p could be partially attenuated by agomir-34a-5p. p53 knockdown enhanced cell viability and suppressed cell apoptosis, whereas miR-34a-5p overexpression exerted opposite effects; miR-34a-5p overexpression partially attenuated p53 knockdown effects on PDT-treated cholangiocarcinoma cells. miR-34a-5p directly targeted WNT7B and inhibited WNT7B expression. Under PDT treatment, WNT7B knockdown inhibited the Wnt signaling and cell viability, and promoted cell apoptosis, while miR-34a-5p suppression showed the opposite trends; WNT7B knockdown partially attenuated miR-34a-5p inhibition effects on PDT-treated cholangiocarcinoma cells. In conclusion, PDT treatment induces p53-induced miR-34a transactivation to inhibit cholangiocarcinoma cell proliferation; the miR-34a-5p/WNT7B axis and Wnt signaling are involved.
Collapse
Affiliation(s)
- Yuanshan Han
- Medical Experimental Innovation Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yang Yang
- Department of Clinical Pathology, Hunan Cancer Hospital, Changsha, China
| | - Sanqian Huang
- Department of Clinical Pathology, Hunan Cancer Hospital, Changsha, China
| | - Lei Yao
- Academician Expert Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lile Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
16
|
Lu Y, Zhang L, Tao H, Sun X, Zhao Y, Xia L, Sun X, Shen J, Fu J, Hamidi MR, Liu H, Wang W, Liu M, Wei L. Two MicroRNAs, miR-34a and miR-125a, Are Implicated in Bicuspid Aortopathy by Modulating Metalloproteinase 2. Biochem Genet 2021; 60:286-302. [PMID: 34195933 DOI: 10.1007/s10528-021-10085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
It has been recognized that wall shear stress plays an important role in the development of Bicuspid Aortopathy (BA), but the intrinsic mechanism is not well elucidated. This study aims to explore the underlying relationship between hemodynamical forces and pathological phenomenon. Total RNA was prepared from aortic wall tissues collected from 20 BA patients. RNA sequencing, bioinformatic analysis and quantitative reverse-transcription PCR validation identified nine miRNAs that were up-regulated in the aortic part exposed to high wall shear stress compared to the low wall shear stress control, and six miRNAs that were down-regulated. Among these candidates, miR-34a and miR-125a, both down-regulated in the high wall shear stress parts, were shown to be potential inhibitors of the metalloproteinase 2 gene. Luciferase reporter assays confirmed that both miRNAs could inhibit the expression of metalloproteinase 2 mRNA in CRL1999 by complementing with its 3' untranslated region. Conversely, immunofluorescence assays showed that inhibition of miR-34a or miR-125a could lead to increased metalloproteinase 2 protein level. On the other hand, both miR-34a and miR-125a were shown to alleviate stretch-induced stimulation of metalloproteinase 2 expression in CRL1999 cells. The results suggested that miR-34a and miR-125a might be implicated in wall shear stress induced aortic pathogenesis due to their apparent regulatory roles in metalloproteinase 2 expression and extracellular matrix remodeling, which are key events in the weakening of aortic walls among BA patients.
Collapse
Affiliation(s)
- Yuntao Lu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lingfei Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongyue Tao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaotian Sun
- Department of Cardiac Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Zhao
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Limin Xia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoning Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinqiang Shen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiahui Fu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mohammad Rafi Hamidi
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huan Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenshuo Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Zhongshan Hospital, Fudan University, Room 633, Building 16, Shanghai, 200032, China.
| | - Mofang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Lai Wei
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Zhongshan Hospital, Fudan University, Room 639, Building 16, Shanghai, 200032, China.
| |
Collapse
|
17
|
Li S, Wei X, He J, Cao Q, Du D, Zhan X, Zeng Y, Yuan S, Sun L. The comprehensive landscape of miR-34a in cancer research. Cancer Metastasis Rev 2021; 40:925-948. [PMID: 33959850 DOI: 10.1007/s10555-021-09973-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
MicroRNA-34 (miR-34) plays central roles in human diseases, especially cancers. Inactivation of miR-34 is detected in cancer cell lines and tumor tissues versus normal controls, implying its potential tumor-suppressive effect. Clinically, miR-34 has been identified as promising prognostic indicators for various cancers. In fact, members of the miR-34 family, especially miR-34a, have been convincingly proved to affect almost the whole cancer progression process. Here, a total of 512 (miR-34a, 10/21), 85 (miR-34b, 10/16), and 114 (miR-34c, 10/14) putative targets of miR-34a/b/c are predicted by at least ten miRNA databases, respectively. These targets are further analyzed in gene ontology (GO), KEGG pathway, and the Reactome pathway dataset. The results suggest their involvement in the regulation of signal transduction, macromolecule metabolism, and protein modification. Also, the targets are implicated in critical signaling pathways, such as MAPK, Notch, Wnt, PI3K/AKT, p53, and Ras, as well as apoptosis, cell cycle, and EMT-related pathways. Moreover, the upstream regulators of miR-34a, mainly including transcription factors (TFs), lncRNAs, and DNA methylation, will be summarized. Meanwhile, the potential TF upstream of miR-34a/b/c will be predicted by PROMO, JASPAR, Animal TFDB 3.0, and GeneCard databases. Notably, miR-34a is an attractive target for certain cancers. In fact, miR-34a-based systemic delivery combined with chemotherapy or radiotherapy can more effectively control tumor progression. Collectively, this review will provide a panorama for miR-34a in cancer research.
Collapse
Affiliation(s)
- Sijing Li
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaohui Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jinyong He
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
- China Cell-Gene Therapy Translational Medicine Research Center, Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Quanquan Cao
- MARBEC, Université Montpellier, UM-CNRS-IRD-IFREMER, cc 092, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Danyu Du
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoman Zhan
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuqi Zeng
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Sun
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Li WJ, Wang Y, Liu R, Kasinski AL, Shen H, Slack FJ, Tang DG. MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic. Front Cell Dev Biol 2021; 9:640587. [PMID: 33763422 PMCID: PMC7982597 DOI: 10.3389/fcell.2021.640587] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Overwhelming evidence indicates that virtually all treatment-naive tumors contain a subpopulation of cancer cells that possess some stem cell traits and properties and are operationally defined as cancer cell stem cells (CSCs). CSCs manifest inherent heterogeneity in that they may exist in an epithelial and proliferative state or a mesenchymal non-proliferative and invasive state. Spontaneous tumor progression, therapeutic treatments, and (epi)genetic mutations may also induce plasticity in non-CSCs and reprogram them into stem-like cancer cells. Intrinsic cancer cell heterogeneity and induced cancer cell plasticity, constantly and dynamically, generate a pool of CSC subpopulations with varying levels of epigenomic stability and stemness. Despite the dynamic and transient nature of CSCs, they play fundamental roles in mediating therapy resistance and tumor relapse. It is now clear that the stemness of CSCs is coordinately regulated by genetic factors and epigenetic mechanisms. Here, in this perspective, we first provide a brief updated overview of CSCs. We then focus on microRNA-34a (miR-34a), a tumor-suppressive microRNA (miRNA) devoid in many CSCs and advanced tumors. Being a member of the miR-34 family, miR-34a was identified as a p53 target in 2007. It is a bona fide tumor suppressor, and its expression is dysregulated and downregulated in various human cancers. By targeting stemness factors such as NOTCH, MYC, BCL-2, and CD44, miR-34a epigenetically and negatively regulates the functional properties of CSCs. We shall briefly discuss potential reasons behind the failure of the first-in-class clinical trial of MRX34, a liposomal miR-34a mimic. Finally, we offer several clinical settings where miR-34a can potentially be deployed to therapeutically target CSCs and advanced, therapy-resistant, and p53-mutant tumors in order to overcome therapy resistance and curb tumor relapse.
Collapse
Affiliation(s)
- Wen Jess Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yunfei Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ruifang Liu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Frank J Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Experimental Therapeutics Graduate Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
19
|
Dehghan R, Najafi R, Azizi Jalilian F, Saidijam M, Radaei Z, Zamani A, Ezati R, Asna-Ashari F, Amini R. A promising effect of zerumbone with improved anti-tumor-promoting inflammation activity of miR-34a in colorectal cancer cell lines. Mol Biol Rep 2021; 48:203-218. [PMID: 33398678 DOI: 10.1007/s11033-020-06035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Cross-talk among inflammation and colorectal cancer cells is chiefly reported through a complex of cytokines, chemokines, and growth factors. MicroRNA performs strategic roles in controlling a variety of signaling cascades. miR-34a is known as a master regulator of tumor suppression. Combined application of different miRNA-based agents and chemotherapeutic drugs has been used to augment drug sensitivity and may reinforce the antitumor effect. A lot of studies specify a substantial increase in the effectiveness of combination therapies. The anti-inflammatory activity of Zerumbone (ZER) was investigated in many cancers. In this study the level of the inflammatory cytokines including CXCL-12 (SDF-1), CCL-2 (MCP-1), TGF-β and IL-33 has been measured in pmiR-34a-5p transfected and pmiR-34a-5p +ZER treated CRC cell lines (HCT-116 and SW48) by QRT-PCR and ELISA methods, respectively. The results showed that miR-34a could significantly inhibit cytokine expression in both cell lines for 48 and 72 h except SDF-1 which no inhibition was observed in SW48 cells. ZER suppressed SDF-1 for all three time points in both cell lines, while in SW48 cells IL-33 and TGF-β were inhibited in 72 h and in HCT-116 cells MCP-1 diminished for only 24 h and TGF-β diminished for all three times. Combination of both miR-34a and ZER suppressed TGF-β, SDF-1 and MCP-1 in HCT-116 cells in all time points while in SW48 cells, suppression of most cytokines was observed in 48 and 72 h. Furthermore Colony formation assay and scratch test were employed to detect changes of proliferation and migration in CRC transfected and treated cells. Generally, we found that miR-34a could considerably decrease the expression of inflammatory cytokines and the combination of ZER+ miR-34 boosted this effect. Moreover the migration and proliferation decreased in treated and transfected cells and this reduction was more severe in miR-34a +ZER treatment. It is important to note that in the case of cell resistance to each of these therapeutic agents, inhibition of cytokines can be compensated by another one.
Collapse
Affiliation(s)
- Razieh Dehghan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farid Azizi Jalilian
- Virology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Radaei
- Immunology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Zamani
- Immunology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Ezati
- Institute of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farzaneh Asna-Ashari
- Department of Community Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Research Center for Molecular Medicine, Department of Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Opposite the People's Park, Pajoohesh Junction, Hamadan, Iran.
| |
Collapse
|
20
|
Ofoeyeno N, Ekpenyong E, Braconi C. Pathogenetic Role and Clinical Implications of Regulatory RNAs in Biliary Tract Cancer. Cancers (Basel) 2020; 13:E12. [PMID: 33375055 PMCID: PMC7792779 DOI: 10.3390/cancers13010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Biliary tract cancer (BTC) is characterised by poor prognosis and low overall survival in patients. This is generally due to minimal understanding of its pathogenesis, late diagnosis and limited therapeutics in preventing or treating BTC patients. Non-coding RNA (ncRNA) are small RNAs (mRNA) that are not translated to proteins. ncRNAs were considered to be of no importance in the genome, but recent studies have shown they play essential roles in biology and oncology such as transcriptional repression and degradation, thus regulating mRNA transcriptomes. This has led to investigations into the role of ncRNAs in the pathogenesis of BTC, and their clinical implications. In this review, the mechanisms of action of ncRNA are discussed and the role of microRNAs in BTC is summarised. The scope of this review will be limited to miRNA as they have been shown to play the most significant roles in BTC progression. There is huge potential in miRNA-based biomarkers and therapeutics in BTC, but more studies, research and technological advancements are required before it can be translated into clinical practice for patients.
Collapse
Affiliation(s)
- Nduka Ofoeyeno
- The Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | | | - Chiara Braconi
- The Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- Beatson West of Scotland Cancer Centre, Glasgow G12 Y0N, UK
| |
Collapse
|
21
|
Kang M, Tang B, Li J, Zhou Z, Liu K, Wang R, Jiang Z, Bi F, Patrick D, Kim D, Mitra AK, Yang-Hartwich Y. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol Cancer 2020; 19:143. [PMID: 32928232 PMCID: PMC7489042 DOI: 10.1186/s12943-020-01248-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Very few proteins encoded by the presumed non-coding RNA transcripts have been identified. Their cellular functions remain largely unknown. This study identifies the tumor-suppressor function of a novel microprotein encoded by the precursor of miR-34a. It consists of 133 amino acid residues, thereby named as miPEP133 (pri-microRNA encoded peptide 133). METHODS We overexpressed miPEP133 in nasopharyngeal carcinoma (NPC), ovarian cancer and cervical cancer cell lines to determine its effects on cell growth, apoptosis, migration, or invasion. Its impact on tumor growth was evaluated in a xenograft NPC model. Its prognostic value was analyzed using NPC clinical samples. We also conducted western blot, immunoprecipitation, mass spectrometry, confocal microscopy and flow cytometry to determine the underlying mechanisms of miPEP133 function and regulation. RESULTS miPEP133 was expressed in normal human colon, stomach, ovary, uterus and pharynx. It was downregulated in cancer cell lines and tumors. miPEP133 overexpression induced apoptosis in cancer cells and inhibited their migration and invasion. miPEP133 inhibited tumor growth in vivo. Low miPEP133 expression was an unfavorable prognostic marker associated with advanced metastatic NPC. Wild-type p53 but not mutant p53 induced miPEP133 expression. miPEP133 enhanced p53 transcriptional activation and miR-34a expression. miPEP133 localized in the mitochondria to interact with mitochondrial heat shock protein 70kD (HSPA9) and prevent HSPA9 from interacting with its binding partners, leading to the decrease of mitochondrial membrane potential and mitochondrial mass. CONCLUSION miPEP133 is a tumor suppressor localized in the mitochondria. It is a potential prognostic marker and therapeutic target for multiple types of cancers.
Collapse
Affiliation(s)
- Min Kang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Bo Tang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Jixi Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Ziyan Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Kang Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ziyan Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
- The first affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangfang Bi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
- Sheng Jing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - David Patrick
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences College of Pharmacy, University of Oklahoma, Oklahoma City, OK, 73117, USA
| | - Anirban K Mitra
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Indiana University School of Medicine-Bloomington, Bloomington, IN, 47405, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Cancer Center, New Haven, CT, 06510, USA.
| |
Collapse
|
22
|
Hidalgo-Sastre A, Lubeseder-Martellato C, Engleitner T, Steiger K, Zhong S, Desztics J, Öllinger R, Rad R, Schmid RM, Hermeking H, Siveke JT, von Figura G. Mir34a constrains pancreatic carcinogenesis. Sci Rep 2020; 10:9654. [PMID: 32541781 PMCID: PMC7295749 DOI: 10.1038/s41598-020-66561-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Several studies have shown that over 70 different microRNAs are aberrantly expressed in pancreatic ductal adenocarcinoma (PDAC), affecting proliferation, apoptosis, metabolism, EMT and metastasis. The most important genetic alterations driving PDAC are a constitutive active mutation of the oncogene Kras and loss of function of the tumour suppressor Tp53 gene. Since the MicroRNA 34a (Mir34a) is a direct target of Tp53 it may critically contribute to the suppression of PDAC. Mir34a is epigenetically silenced in numerous cancers, including PDAC, where Mir34a down-regulation has been associated with poor patient prognosis. To determine whether Mir34a represents a suppressor of PDAC formation we generated an in vivo PDAC-mouse model harbouring pancreas-specific loss of Mir34a (KrasG12D; Mir34aΔ/Δ). Histological analysis of KrasG12D; Mir34aΔ/Δ mice revealed an accelerated formation of pre-neoplastic lesions and a faster PDAC development, compared to KrasG12D controls. Here we show that the accelerated phenotype is driven by an early up-regulation of the pro-inflammatory cytokines TNFA and IL6 in normal acinar cells and accompanied by the recruitment of immune cells. Our results imply that Mir34a restrains PDAC development by modulating the immune microenvironment of PDAC, thus defining Mir34a restauration as a potential therapeutic strategy for inhibition of PDAC development.
Collapse
Affiliation(s)
- Ana Hidalgo-Sastre
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | | | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Suyang Zhong
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Judit Desztics
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Department of Medicine II and TranslaTUM Cancer Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany
| | - Jens T Siveke
- Institute for Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Essen, Essen, Germany
| | - Guido von Figura
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany.
| |
Collapse
|
23
|
Wang J, Zhang J, Xiong Y, Li J, Li X, Zhao J, Zhu G, He H, Mayinuer Y, Wan X. TGF-β regulation of microRNA miR-497-5p and ocular lens epithelial cell mesenchymal transition. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1928-1937. [PMID: 32399769 DOI: 10.1007/s11427-019-1603-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to investigate the role of a human lens microRNA (miR-497-5p) in regulating epithelialmesenchymal transition (EMT) under the control of transforming growth factor beta (TGF-β). A microRNA array was used to evaluate the microRNA profiles of untreated and TGF-β-treated human lens epithelial cells in culture. This showed that TGF-β treatment led to the upregulation of 96 microRNAs and downregulation of 39 microRNAs. Thirteen microRNAs were predicted to be involved in the pathogenesis of posterior capsule opacification (PCO). Meanwhile, overexpression of miR-497-5p suppressed cell proliferation and EMT 48 h post-transfection, and inhibition of miR-497-5p accelerated cell proliferation and EMT. Treatment with TGF-β inhibited the expression of miR-497-5p, but not cell proliferation. miR-497-5p was also found to regulate the level of CCNE1 and FGF7, which are reported to be actively involved in EMT. CCNE1 and FGF7 were bona fide targets of miR-497-5p. The results suggest that miR-497-5p participates in the direct regulation of lens epithelial cell EMT and is regulated by TGF-β. miR-497-5p may be a novel target for PCO therapy.
Collapse
Affiliation(s)
- Jinda Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing, 100005, China
| | - Jingshang Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing, 100005, China
| | - Ying Xiong
- Beijing Tongren Hospital of Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing, 100005, China
| | - Jing Li
- Beijing Tongren Hospital of Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Eye Center, Beijing, 100005, China
| | - Xiaoxia Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing, 100005, China
| | - Jing Zhao
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing, 100005, China
| | - Guyu Zhu
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing, 100005, China
| | - Hailong He
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing, 100005, China
| | - Yusufu Mayinuer
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing, 100005, China
| | - Xiuhua Wan
- Beijing Tongren Eye Center, Beijing Tongren Hospital of Capital Medical University; Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing Institute of Ophthalmology, Beijing, 100005, China.
| |
Collapse
|
24
|
Lv Y, Wang Z, Zhao K, Zhang G, Huang S, Zhao Y. Role of noncoding RNAs in cholangiocarcinoma (Review). Int J Oncol 2020; 57:7-20. [PMID: 32319584 DOI: 10.3892/ijo.2020.5047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/16/2020] [Indexed: 11/06/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour originating from biliary epithelial cells, and is increasing in incidence. Radical surgery is the main treatment. However, the pathogenesis of CCA is unclear. Noncoding RNAs (ncRNAs) are non‑protein‑coding RNAs produced by genomic transcription that include microRNAs (miRNAs), circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs). They play important roles in gene expression, epigenetic modification, cell proliferation, differentiation and reproduction. ncRNAs also serve key roles in cancer development. Numerous studies have been carried out on ncRNAs, and associated publications have shown that ncRNAs are closely associated with the physiological and pathological mechanisms of CCA. The findings of these studies can provide new insights into the diagnosis, treatment and prognosis of CCA. The present review summarizes the pathophysiological mechanisms of different types of ncRNAs, including miRNAs, circRNAs and lncRNAs in CCA, and their applications in the diagnosis and treatment of CCA.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Zhenzhen Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Kun Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Guokun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Shuai Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Yongfu Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| |
Collapse
|
25
|
Hasan NAHM, Harith HH, Israf DA, Tham CL. The differential effects of commercial specialized media on cell growth and transforming growth factor beta 1-induced epithelial-mesenchymal transition in bronchial epithelial cells. Mol Biol Rep 2020; 47:3511-3519. [PMID: 32279207 DOI: 10.1007/s11033-020-05439-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is one of the mechanisms that contribute to bronchial remodelling which underlie chronic inflammatory airway diseases such as chronic obstructive pulmonary disorder (COPD) and asthma. Bronchial EMT can be triggered by many factors including transforming growth factor β1 (TGFβ1). The majority of studies on TGFβ1-mediated bronchial EMT used BEGM as the culture medium. LHC-9 medium is another alternative available which is more economical but a less common option. Using normal human bronchial epithelial cells (BEAS-2B) cultured in BEGM as a reference, this study aims to validate the induction of EMT by TGFβ1 in cells cultured in LHC-9. Briefly, the cells were maintained in either LHC-9 or BEGM, and induced with TGFβ1 (5, 10 and 20 ng/ml) for 48 h. EMT induction was confirmed by morphological analysis and EMT markers expression by immunoblotting. In both media, cells induced with TGFβ1 displayed spindle-like morphology with a significantly higher radius ratio compared to non-induced cells which displayed a cobblestone morphology. Correspondingly, the expression of the epithelial marker E-cadherin was significantly lower, whereas the mesenchymal marker vimentin expression was significantly higher in induced cells, compared to non-induced cells. By contrast, a slower cell growth rate was observed in LHC-9 compared to that of BEGM. This study demonstrates that neither LHC-9 nor BEGM significantly influence TGFβ1-induced bronchial EMT. However, LHC-9 is less optimal for bronchial epithelial cell growth compared to BEGM. Thus, LHC-9 may be a more cost-effective substitute for BEGM, provided that time is not a factor.
Collapse
Affiliation(s)
- Nur Amilia Hanie Mohamad Hasan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Qiao PF, Yao L, Zeng ZL. Catalpol‑mediated microRNA‑34a suppresses autophagy and malignancy by regulating SIRT1 in colorectal cancer. Oncol Rep 2020; 43:1053-1066. [PMID: 32323786 PMCID: PMC7057773 DOI: 10.3892/or.2020.7494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common digestive tract tumors worldwide. Catalpol exerts inhibitory effects on the progression of several cancer types by regulating microRNAs (miRs). However, the precise role and carcinostatic mechanism of catalpol on CRC cells are poorly understood which limits the application of catalpol treatment. In the present study, miR-34a and sirtuin 1 (SIRT1) expression levels were detected in CRC tissues and CRC cell lines by RT-qPCR. Computational software analysis, luciferase assays and western blotting were used to demonstrate the downstream target of miR-34a in CRC cells. Effects of catalpol on cell viability, apoptosis, autophagic flux and the miR-34a/SIRT1 axis in the CRC cells were assessed by CCK-8 assay, flow cytometry, electron microscopy and western blotting, respectively. Whether the miR-34a/SIRT1 axis participated in catalpol-mediated autophagy and apoptosis was investigated. The effects of catalpol on the miR-34a/SIRT1 axis and malignant behavior were evaluated in a rat model of azoxymethane (AOM)-induced CRC. It was revealed that miR-34a expression levels were significantly decreased while SIRT1 was overexpressed in most of the CRC tissues and all the CRC cell lines. Clinically, a low level of miR-34a was correlated with poor clinicopathological characteristics in CRC patients. Catalpol reduced cell viability, suppressed autophagy, promoted apoptosis, and regulated the expression of SIRT1 by inducing miR-34a in vitro and in vivo. The autophagy-inhibiting effect of catalpol may be a mechanism to promote apoptosis of CRC cells. miR-34a mimic transfection resulted in autophagy-suppressive activity similar to that of catalpol, while the miR-34a inhibitor attenuated the antiautophagic effects of catalpol. In conclusion, miR-34a is involved in regulating catalpol-mediated autophagy and malignant behavior by directly inhibiting SIRT1 in CRC.
Collapse
Affiliation(s)
- Peng-Fei Qiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lei Yao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhao-Lin Zeng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
27
|
Moradi-Marjaneh R, Khazaei M, Ferns GA, Aghaee-Bakhtiari SH. The Role of TGF-β Signaling Regulatory MicroRNAs in the Pathogenesis of Colorectal Cancer. Curr Pharm Des 2019; 24:4611-4618. [PMID: 30636580 DOI: 10.2174/1381612825666190110150705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers globally and is associated with a high mortality rate. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in normal intestinal tissue function, but has also been implicated in the development of CRC. MicroRNAs (miRNAs) have also recently emerged as important regulators of cancer development and progression. They act by targeting multiple signaling pathways including the TGF-β signaling pathway. There is growing evidence demonstrating that miRNAs target various components of the TGF-β signaling pathway, including TGF-β1, TGF-β2, regulatory SMADs (SMAD1, 2, 3, 5 and 9), co-mediator SMAD4, inhibitory SMADs (SMAD6 and 7) and the TGF-β receptors, and thereby alter the proliferation and migration of CRC cells. In this review, we summarize the data concerning the interaction between TGF-β signaling pathway and miRNAs with the aim to better understanding the CRC molecular mechanisms and hence better management of this disease.
Collapse
Affiliation(s)
- Reyhaneh Moradi-Marjaneh
- Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Seyed H Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Yang T, Huang T, Zhang D, Wang M, Wu B, Shang Y, Sattar S, Ding L, Liu Y, Jiang H, Liang Y, Zhou F, Wei Y. TGF-β receptor inhibitor LY2109761 enhances the radiosensitivity of gastric cancer by inactivating the TGF-β/SMAD4 signaling pathway. Aging (Albany NY) 2019; 11:8892-8910. [PMID: 31631064 PMCID: PMC6834415 DOI: 10.18632/aging.102329] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Radiotherapy is used to treat gastric cancer (GC); however, radioresistance challenges the clinical outcomes of GC, and the mechanisms of radioresistance in GC remain poorly understood. Here, we report that the TGF-β receptor inhibitor, LY2109761 (LY), is a potential radiosensitizer both in vitro and in vivo. As per the Cancer Genome Atlas database, TGF-β overexpression is significantly related to poor overall survival in GC patients. We demonstrated that the TGF-β/SMAD4 signaling pathway was activated in both radioresistant GC cells and radioresistant GC patients. As a TGF-β receptor inhibitor, LY can enhance the activities of irradiation by inhibiting cell proliferation, decreasing clonogenicity and increasing apoptosis. Moreover, LY attenuated the radiation-induced migration and invasion, epithelial-mesenchymal transition (EMT), inflammatory factor activation, immunosuppression, and cancer stem cell characteristics of GC cells, thus leading to radiosensitization of the GC cells. We confirmed that LY reduced tumor growth, inhibited TGF-β/SMAD4 pathway activation and reversed irradiation-induced EMT in a tumor xenograft model. Our findings indicate that the novel TGF-β receptor inhibitor, LY, increases GC radiosensitivity by directly regulating the TGF-β/SMAD4 signaling pathway. These findings provide new insight for radiotherapy in GC patients.
Collapse
Affiliation(s)
- Tian Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tianhe Huang
- Department of Clinical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.,Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dongdong Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Miao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Balu Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Safat Sattar
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lu Ding
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongqiang Jiang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuxing Liang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
29
|
Zhou M, Zhu Y, Hou R, Mou X, Tan J. Identification of candidate genes for the diagnosis and treatment of cholangiocarcinoma using a bioinformatics approach. Oncol Lett 2019; 18:5459-5467. [PMID: 31612054 PMCID: PMC6781666 DOI: 10.3892/ol.2019.10904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary epithelial tumor with poor prognosis. As the key genes and signaling pathways underlying the disease have not been fully elucidated, the aim of the present study was to improve the understanding of the molecular mechanisms associated with CCA. The microarray datasets GSE26566 and GSE89749 were downloaded from the Gene Expression Omnibus and differentially expressed genes (DEGs) between CCA and normal bile duct samples were identified. Gene and pathway enrichment analyses were performed, and a protein-protein interaction network was constructed and analyzed. A total of 159 DEGs and 10 hub genes were identified. The functions and pathways of the DEGs were mainly enriched in ‘heparin binding’, ‘serine-type endopeptidase activity’, ‘calcium ion binding’, ‘pancreatic secretion’, ‘fat digestion and absorption’ and ‘protein digestion and absorption’. Survival analysis revealed that the upregulated expression of carboxypeptidase B1 and Kruppel like factor 4 was significantly associated with lower overall survival rate. In summary, the present study identified DEGs and hub genes associated with CCA, which may serve as potential diagnostic and therapeutic targets for the disease.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Cell Biology, The Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yabin Zhu
- Department of Cell Biology, The Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ruixia Hou
- Department of Cell Biology, The Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xianbo Mou
- Department of Cell Biology, The Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Tan
- Department of Hepatology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
30
|
Tummanatsakun D, Proungvitaya T, Roytrakul S, Limpaiboon T, Wongkham S, Wongkham C, Silsirivanit A, Somintara O, Sangkhamanon S, Proungvitaya S. Serum Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APEX1) Level as a Potential Biomarker of Cholangiocarcinoma. Biomolecules 2019; 9:biom9090413. [PMID: 31454981 PMCID: PMC6770206 DOI: 10.3390/biom9090413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Diagnostic and/or prognostic biomarkers for cholangiocarcinoma (CCA) are still insufficient with poor prognosis of patients. To discover a new CCA biomarker, we constructed our secretome database of three CCA cell lines and one control cholangiocyte cell line using GeLC-MS/MS. We selected candidate proteins by five bioinformatics tools for secretome analysis. The inclusion criteria were as follows: having predicted signal peptide or being predicted as non-classically secreted protein; together with having no transmembrane helix and being previously detected in plasma and having the highest number of signal peptide cleavage sites. Eventually, apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) was selected for further analysis. To validate APEX1 as a bio-marker for CCA, serum APEX1 levels of 80, 39, and 40 samples collected from CCA, benign biliary diseases (BBD), and healthy control groups, respectively, were measured using dot blot analysis. The results showed that serum APEX1 level in CCA group was significantly higher than that in BBD or healthy control group. Among CCA patients, serum APEX1 level was significantly higher in patients having metastasis than in those without metastasis. The higher level of serum APEX1 was correlated with the shorter survival time of the patients. Serum APEX1 level might be a diagnostic and prognostic biomarker for CCA.
Collapse
Affiliation(s)
- Doungdean Tummanatsakun
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Temduang Limpaiboon
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sopit Wongkham
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chaisiri Wongkham
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Atit Silsirivanit
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ongart Somintara
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sakkarn Sangkhamanon
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
- Cholangiocarcinoma Research Institute (CARI), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
31
|
Papoutsoglou P, Louis C, Coulouarn C. Transforming Growth Factor-Beta (TGFβ) Signaling Pathway in Cholangiocarcinoma. Cells 2019; 8:960. [PMID: 31450767 PMCID: PMC6770250 DOI: 10.3390/cells8090960] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma is a deadly cancer worldwide, associated with a poor prognosis and limited therapeutic options. Although cholangiocarcinoma accounts for less than 15% of liver primary cancer, its silent nature restricts early diagnosis and prevents efficient treatment. Therefore, it is of clinical relevance to better understand the molecular basis of cholangiocarcinoma, including the signaling pathways that contribute to tumor onset and progression. In this review, we discuss the genetic, molecular, and environmental factors that promote cholangiocarcinoma, emphasizing the role of the transforming growth factor β (TGFβ) signaling pathway in the progression of this cancer. We provide an overview of the physiological functions of TGFβ signaling in preserving liver homeostasis and describe how advanced cholangiocarcinoma benefits from the tumor-promoting effects of TGFβ. Moreover, we report the importance of noncoding RNAs as effector molecules downstream of TGFβ during cholangiocarcinoma progression, and conclude by highlighting the need for identifying novel and clinically relevant biomarkers for a better management of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Panagiotis Papoutsoglou
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France
| | - Corentin Louis
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France.
| |
Collapse
|
32
|
NF-κB-driven miR-34a impairs Treg/Th17 balance via targeting Foxp3. J Autoimmun 2019; 102:96-113. [DOI: 10.1016/j.jaut.2019.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
|
33
|
Zhang L, Niu H, Ma J, Yuan BY, Chen YH, Zhuang Y, Chen GW, Zeng ZC, Xiang ZL. The molecular mechanism of LncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma. Mol Cancer 2019; 18:120. [PMID: 31349837 PMCID: PMC6659280 DOI: 10.1186/s12943-019-1044-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background Bone metastasis (BM) has long been recognized as a major threat to the quality of life of hepatocellular cancer (HCC) patients. While LncRNA34a (Lnc34a) has been shown to regulate colon cancer stem cell asymmetric division, its effect on HCC BM remains unknown. Methods In situ hybridization and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of Lnc34a in HCC tissues and cell lines. Ventricle injection model was constructed to explore the effect of Lnc34a on BM in vivo. The methylation of miR-34a promoter and histones deacetylation were examined by using bisulfate-sequencing PCR and chromatin immunoprecipitation assays. RNA pull down and RNA immunoprecipitation were performed to investigated the interaction between Lnc34a and epigenetic regulators. Dual-luciferase reporter assay was conducted to find miR-34a target. The involvement of TGF-β pathway in the BM from HCC was determined by qRT-PCR, western, and elisa assays. Results We found that Lnc34a was significantly overexpressed in HCC tissues and associated with BM. Both in vitro and in vivo experiments indicate that the restoration or knockdown of Lnc34a expression in HCC cells had a marked effect on cellular migration, invasion, and metastasis. Mechanistic analyses suggested that Lnc34a epigenetically suppresses miR-34a expression through recruiting DNMT3a via PHB2 to methylate miR-34a promoter and HDAC1 to promote histones deacetylation. On the other hand, miR-34a targets Smad4 via the TGF-β pathway, followed by altering the transcription of the downstream genes (i.e., CTGF and IL-11) that are associated with BM. Conclusions Our study is the first to document the pro-bone metastatic role of Lnc34a in BM of HCC and reveal a novel mechanism for the activation of the TGF-β signaling pathway in HCC BM, providing evidence of a potential therapeutic strategy in HCC BM. Electronic supplementary material The online version of this article (10.1186/s12943-019-1044-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Jie Ma
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Bao-Ying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yu-Han Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Gen-Wen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
34
|
Bhise NS, Elsayed AH, Cao X, Pounds S, Lamba JK. MicroRNAs Mediated Regulation of Expression of Nucleoside Analog Pathway Genes in Acute Myeloid Leukemia. Genes (Basel) 2019; 10:genes10040319. [PMID: 31022985 PMCID: PMC6523677 DOI: 10.3390/genes10040319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 01/08/2023] Open
Abstract
Nucleoside analog, cytarabine (ara-C) is the mainstay of acute myeloid leukemia (AML) chemotherapy. Cytarabine and other nucleoside analogs require activation to the triphosphate form (ara-CTP). Intracellular ara-CTP levels demonstrate significant inter-patient variation and have been related to therapeutic response in AML patients. Inter-patient variation in expression levels of drug transporters or enzymes involved in their activation or inactivation of cytarabine and other analogs is a prime mechanism contributing to development of drug resistance. Since microRNAs (miRNAs) are known to regulate gene-expression, the aim of this study was to identify miRNAs involved in regulation of messenger RNA expression levels of cytarabine pathway genes. We evaluated miRNA and gene-expression levels of cytarabine metabolic pathway genes in 8 AML cell lines and The Cancer Genome Atlas (TCGA) data base. Using correlation analysis and functional validation experiments, our data demonstrates that miR-34a-5p and miR-24-3p regulate DCK, an enzyme involved in activation of cytarabine and DCDT, an enzyme involved in metabolic inactivation of cytarabine expression, respectively. Further our results from gel shift assays confirmed binding of these mRNA-miRNA pairs. Our results show miRNA mediated regulation of gene expression levels of nucleoside metabolic pathway genes can impact interindividual variation in expression levels which in turn may influence treatment outcomes.
Collapse
Affiliation(s)
- Neha S Bhise
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida, Gainesville, FL 32610, USA.
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Abdelrahman H Elsayed
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida, Gainesville, FL 32610, USA.
| | - Xueyuan Cao
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
35
|
Li C, Zhang WY, Yu Y, Cheng CS, Han JY, Yao XS, Zhou H. Discovery of the mechanisms and major bioactive compounds responsible for the protective effects of Gualou Xiebai Decoction on coronary heart disease by network pharmacology analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:261-268. [PMID: 30668346 DOI: 10.1016/j.phymed.2018.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/27/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Gualou Xiebai decoction (GLXB), a multi-component herbal formula, has been widely used to treat coronary heart disease (CHD) in China for centuries. Several studies have revealed part of its pharmacological activities, whereas its active compounds and mechanisms of action are still unknown because of its complex composition. PURPOSE Discover the major active compounds and the pharmacological mechanisms of GLXB by network pharmacology methods. METHODS The main candidate target network was constructed by predicting targets of absorbable chemical compounds of GLXB, collecting therapeutic targets of cardiovascular drugs, constructing target network and layers of screening. Community detection and edge-betweenness calculation were applied to analyze the main candidate target network. Cell viability test, Western blot and flow cytometry were performed to validate the predicted results in cardiomyocytes hypoxia/reoxygenation model. RESULTS Five clusters and eight cross-talk targets were found in the main candidate target network. Their functions combined together might explain the multifunctional role of GLXB against CHD. Among the cross-talk targets, ESR1 (Estrogen receptor alpha, ERα) and MAPK14 (Mitogen-activated protein kinase 14, p38) were both drug targets and therapeutic targets whose interaction exhibited the greatest edge-betweenness value, suggesting their crucial role in the protective effect of GLXB. The compounds targeting on ESR1 and MAPK14 were identified as apigenin and 25S-macrostemonoside P respectively which were regard as the major bioactive compounds. The predicted results including the major bioactive compounds, their targets and the synergic effects between them were validated. CONCLUSION This study screened out major bioactive compounds from GLXB and offered a new understanding of the protection mechanism of GLXB against CHD by network pharmacology method and provides a combination strategy to explore mechanisms of action of multi-component drugs from a holistic perspective.
Collapse
Affiliation(s)
- Chong Li
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Wei-Yang Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, Guangdong Province 510632, PR China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, PR China
| | - Xin-Sheng Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China; Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, Guangdong Province 510632, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Taipa, Macau, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
36
|
Tian X, Fei Q, Du M, Zhu H, Ye J, Qian L, Lu Z, Zhang W, Wang Y, Peng F, Chen J, Liu B, Li Q, He X, Yin L. miR-130a-3p regulated TGF-β1-induced epithelial-mesenchymal transition depends on SMAD4 in EC-1 cells. Cancer Med 2019; 8:1197-1208. [PMID: 30741461 PMCID: PMC6434193 DOI: 10.1002/cam4.1981] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/21/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023] Open
Abstract
Metastasis and invasion are the primary causes of malignant progression in esophageal squamous cell carcinoma (ESCC). Epithelial‐mesenchymal transition (EMT) is crucial step of acquisition of "stemness" properties in tumor cells. However, the mechanism of esophageal cancer metastasis remains unclear. This research was designed to explore the role and mechanism of SMAD4 and miR‐130a‐3p in the progression of transforming growth factor‐β (TGF‐β)‐induced EMT in vivo and in vitro. The expression of miR‐130a‐3p in ESCC cell line and normal esophageal epithelial cell was determined by RT‐qPCR. The protein expression levels of TGF‐β‐induced changes in EMT were analyzed by western blotting and immunofluorescence. Dual‐luciferase report assays were used to validate the regulation of miR‐130a‐3p‐SMAD4 axis. The effect of miR‐130a‐3p and SMAD4 in TGF‐β‐induced migration, invasion in the ESCC cell line EC‐1 was investigated by wound healing assays and Transwell assays. Here we found that knocked down SMAD4 could partially reverse TGF‐β‐induced migration, invasion, and EMT progression in the ESCC cell line EC‐1. miR‐130a‐3p, which directly targets SMAD4, is down‐regulated in ESCC. miR‐130a‐3p inhibits the migration and invasion of EC‐1 cells both in vitro and in vivo. Finally, miR‐130a‐3p inhibits TGF‐β‐induced EC‐1 cell migration, invasion, and EMT progression in a SMAD4‐dependent way. In conclusion, this study provides new insights into the mechanism underlying ESCC metastasis. The TGF‐β/miR‐130a‐3p/SMAD4 pathway could be potential targets for clinical treatment of ESCC.
Collapse
Affiliation(s)
- Xiaokang Tian
- Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Qian Fei
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyu Du
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Hongming Zhu
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Jinjun Ye
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Luxi Qian
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiwei Lu
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjun Zhang
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Wang
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Baoling Liu
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Li
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xia He
- Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Yin
- Jiangsu Cancer Hospital, Jiangsu Institue of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:53. [PMID: 30717802 PMCID: PMC6360685 DOI: 10.1186/s13046-019-1059-5] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/27/2019] [Indexed: 12/20/2022]
Abstract
MicroRNA-34 (miR-34) has been reported to be dysregulated in various human cancers and regarded as a tumor suppressive microRNA because of its synergistic effect with the well-known tumor suppressor p53. Along with the application of MRX34, the first tumor-targeted microRNA drug which based on miR-34a mimics, on phase I clinical trial (NCT01829971), the significance of miR-34 is increasingly recognized. miR-34 plays a crucial role on repressing tumor progression by involving in epithelial-mesenchymal transition (EMT) via EMT- transcription factors, p53 and some important signal pathways. Not only that, numerous preclinical researches revealed the giant potential of miR-34a on cancer therapy through diversiform nano-scaled delivery systems. Here, we provide an overview about the function of miR-34 in various cancers and the mechanism of miR-34 in tumor-associated EMT. Furthermore, its potential role as a microRNA therapeutic candidate is also discussed. Notwithstanding some obstacles existed, the extensive application prospect of miR-34 on oncotherapy cannot be neglected.
Collapse
|
38
|
Aghamaliyev U, Gaitantzi H, Thomas M, Simon-Keller K, Gaiser T, Marx A, Yagublu V, Araos J, Cai C, Valous NA, Halama N, Kiesslich T, Ebert M, Grützmann R, Rückert F, Breitkopf-Heinlein K. Downregulation of SPARC Is Associated with Epithelial-Mesenchymal Transition and Low Differentiation State of Biliary Tract Cancer Cells. Eur Surg Res 2019; 60:1-12. [PMID: 30650425 DOI: 10.1159/000494734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Biliary tract cancers (BTCs) have a poor prognosis. BTCs are characterized by a prominent desmoplastic reaction which possibly contributes to the aggressive phenotype of this tumor. The desmoplastic reaction includes excessive production and deposition of extracellular matrix proteins such as periostin, secreted protein acidic and rich in cysteine (SPARC), thrombospondin-1, as well as accumulation of α-smooth muscle actin-positive cancer-associated fibroblasts and immune cells, secreting growth factors and cytokines including transforming growth factor (TGF)-β. In the present study, we investigated the expression of SPARC in BTC as well as its possible regulation by TGF-β. METHODS Expression levels of Sparc, TGF-β1 and its receptor ALK5 were evaluated by quantitative real-time PCR in 6 biliary tract cell lines as well as 1 immortalized cholangiocyte cell line (MMNK-1). RNAs from tumor samples of 7 biliary tract cancer patients were analyzed for expression of Sparc, TGF-β type II receptor (TbRII) as well as Twist and ZO-1. MMNK-1 cells were stimulated with TGF-β for 24 h, and Sparc, ZO-1 and E-Cadherin expressions were determined. The presence of SPARC protein was analyzed by immunohistochemistry in tumor specimens from 10 patients. RESULTS When comparing basal Sparc transcript levels in diverse BTC cell lines to MMNK-1 cells, we found that it was strongly downregulated in all cancer cell lines. The remaining expression levels were higher in highly differentiated cell lines (CCSW1, MZChA1, MZChA2 and TFK-1) than in less differentiated and undifferentiated ones (BDC, SKChA1). Expression of Sparc in BTC patient samples showed a significant positive correlation with expression of the epithelial marker ZO-1. In contrast, the mesenchymal marker Twist and the TbRII showed a trend of negative correlation with expression of Sparc in these samples. TGF-β exposure significantly downregulated Sparc expression in MMNK-1 cholangiocytes in vitro in parallel to downregulation of epithelial markers (E-Cadherin and ZO-1). Finally, SPARC immunostaining was performed in 10 patient samples, and the correlation between absence of SPARC and survival times was analyzed. CONCLUSIONS These data imply that a decrease in SPARC expression is correlated with dedifferentiation of BTC cells resulting in enhanced EMT being possibly mediated by TGF-β. Thereby SPARC levels might be a marker for individual prognosis of a patient, and strategies aiming at inhibition of SPARC downregulation might have potential for new future therapies.
Collapse
Affiliation(s)
- Ughur Aghamaliyev
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Haristi Gaitantzi
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Stuttgart, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Vugar Yagublu
- Department of Surgery, Klinikum Frankfurt Höchst, Frankfurt am Main, Germany
| | - Joaquin Araos
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chen Cai
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nektarios A Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Niels Halama
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | - Tobias Kiesslich
- Department of Medicine I, University Hospital Salzburg, Salzburg, Austria
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Robert Grützmann
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Felix Rückert
- Department of Surgery, University Medicine Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,
| |
Collapse
|
39
|
Chen T, Li S, Chen B, Huang Q, Kong X, Shen C, Gu H, Wang X. Akt3 is a target of miR-29c-3p and serves an important function in the pathogenesis of congenital heart disease. Int J Mol Med 2018; 43:980-992. [PMID: 30535467 DOI: 10.3892/ijmm.2018.4008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/09/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tao Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shu‑Jun Li
- Department of Pediatrics, Children's Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Bin Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qiong Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiang‑Ying Kong
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chen Shen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hai‑Tao Gu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao‑Wei Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
40
|
Deng Y, Zhao F, Zhang Z, Sun F, Wang M. Long Noncoding RNA SNHG7 Promotes the Tumor Growth and Epithelial-to-Mesenchymal Transition via Regulation of miR-34a Signals in Osteosarcoma. Cancer Biother Radiopharm 2018; 33:365-372. [PMID: 29989838 DOI: 10.1089/cbr.2018.2503] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Yiqi Deng
- Department of Orthopaedics, Shanxian Central Hospital of Shandong Province, Heze, Shandong, P.R. China
| | - Feng Zhao
- Department of Orthopaedics, Shanxian Central Hospital of Shandong Province, Heze, Shandong, P.R. China
| | - Zhenhua Zhang
- Department of Orthopaedics, Shanxian Central Hospital of Shandong Province, Heze, Shandong, P.R. China
| | - Fujie Sun
- Department of Orthopaedics, Shanxian Central Hospital of Shandong Province, Heze, Shandong, P.R. China
| | - Mingxing Wang
- Department of Orthopaedics, Shanxian Central Hospital of Shandong Province, Heze, Shandong, P.R. China
| |
Collapse
|
41
|
Sun C, Zhu J, Wu B, Chen J, Zhu Z, Cai P, Guo W, Gu Z, Wang J, Huang S. Diagnostic and prognostic value of microRNAs in cholangiocarcinoma: a systematic review and meta-analysis. Cancer Manag Res 2018; 10:2125-2139. [PMID: 30050323 PMCID: PMC6055881 DOI: 10.2147/cmar.s158155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background and aim Several dysregulated microRNAs (miRNAs) have been implicated in the pathogenesis of cholangiocarcinoma (CCA); however, small sample sizes and invariable research designs are limitations, hindering a thorough analysis of miRNAs as diagnostic and prognostic tools for CCA. This study aimed to systematically summarize the clinical value of miRNAs in human CCA both for all available miRNAs and single miRNA with multiple researches. Methods Pooled parameters included the area under the curve (AUC), sensitivity, specificity, and hazard ratios (HRs) to separately determine overall diagnostic and prognostic performance. Subgroup and sensitivity analyses were performed only in the event of heterogeneity. Thirty-four studies including 12 diagnostic studies and 22 prognostic studies were eligible for inclusion in this meta-analysis. Results We observed that miR-21, miR-26, miR-483, miR-106a, miR-150, miR-192, and miR-194 were employed for distinguishing patients with CCA from healthy controls. Pooled sensitivity, specificity, and AUC were 0.82 (95% confidence interval [CI] 0.77–0.86), 0.83 (95% CI 0.75–0.89), and 0.88 (95% CI 0.85–0.91), respectively. Abnormal expression of miR-21, miR-26a, miR-192, miR-200c, miR-221, miR-29a, miR-191, miR-181c, miR-34a, miR-106a, miR-203, and miR-373 in patients was confirmed to associate with poor survival rate. Pooled HRs and 95% CIs were calculated using STATA, resulting in the pooled HR of 1.47 (95% CI 0.91–2.37) for overall survival (OS), 0.67 (95% CI 0.16–2.81) for disease-free survival (DFS), 2.31 (95% CI 1.59–3.36) for progression-free survival (PFS), and 2.68 (95% CI 0.88–8.15) for relapse-free survival (RFS). Thus, CCA patients with dysregulated miRNA expression were confirmed to have shorter OS, DFS, PFS, and RFS. Data regarding the diagnostic and prognostic roles of miR-21 suggested pooled diagnostic results of miR-21 for sensitivity, specificity, and AUC were 0.85 (95% CI 0.76–0.91), 0.92 (95% CI 0.81–0.97), and 0.93 (95% CI 0.91–0.95), respectively, suggesting better diagnostic performance of miR-21 compared with other miRNAs. Meanwhile, pooled prognostic result of miR-21 for HR was 1.88 (95% CI 1.41–2.51), indicating miR-21 could more appropriately predict shorter OS in patients with CCA. Conclusion miRNAs may provide a new approach for clinical application, and miR-21 may be a promising biomarker for diagnosis and prognosis of CCA.
Collapse
Affiliation(s)
- Chao Sun
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Jie Zhu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Bin Wu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Jianlei Chen
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Zhenwei Zhu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Peng Cai
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Wanliang Guo
- Radiology Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Zhicheng Gu
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Jian Wang
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| | - Shungen Huang
- General Surgery Department, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China,
| |
Collapse
|
42
|
Yang Z, Zhang T, Wang Q, Gao H. Overexpression of microRNA-34a Attenuates Proliferation and Induces Apoptosis in Pituitary Adenoma Cells via SOX7. MOLECULAR THERAPY-ONCOLYTICS 2018; 10:40-47. [PMID: 30109259 PMCID: PMC6083820 DOI: 10.1016/j.omto.2018.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
Abstract
Pituitary adenomas constitute one of the most common intracranial tumors and are typically benign. However, the role of the tumor suppressor microRNA-34a (miR-34a), which is implicated in other cancers, in pituitary adenoma pathogenesis remains largely unknown. miR-34a expression was compared between GH4C1 cancer cells and normal cells derived from the pituitary gland of Rattus norvegicus, and the effects of miR-34a on GH4C1 cell proliferation and apoptosis were examined. miR-34a target genes were identified and analyzed computationally. The mRNA levels of the miR-34a target genes were measured using qRT-PCR, and the protein levels of the differentially expressed targets were assessed by western blotting. miR-34a expression was significantly lower in GH4C1 cells, whereas miR-34a overexpression significantly inhibited GH4C1 cell proliferation and promoted cell apoptosis though SRY-box 7 (SOX7). Our data facilitate the development of a better understanding of the pathogenesis and treatment of pituitary adenomas by elucidating the crucial role of miR-34a in the development of pituitary adenomas.
Collapse
Affiliation(s)
- Zijiang Yang
- Jiangyin People's Hospital Affiliated to Nantong University, Shoushanlu No. 163, Jiangyin, Wuxi 214400, China.,Neurosurgery, The First People's Hospital of Kunshan, Qianjinxilu No. 91, Kunshan, Suzhou 215300, China
| | - Ting Zhang
- Central Laboratory, Jiangyin People's Hospital Affiliated to Nantong University, Shoushanlu No. 163, Jiangyin, Wuxi 214400, China
| | - Qiping Wang
- Neurosurgery, Jiangyin People's Hospital Affiliated to Nantong University, Shoushanlu No. 163, Jiangyin, Wuxi 214400, China
| | - Heng Gao
- Neurosurgery, Jiangyin People's Hospital Affiliated to Nantong University, Shoushanlu No. 163, Jiangyin, Wuxi 214400, China
| |
Collapse
|
43
|
Shan X, Liu Q, Li Z, Li C, Gao H, Zhang Y. Epithelial–Mesenchymal Transition Induced by SMAD4 Activation in Invasive Growth Hormone-Secreting Adenomas. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractBackgroundThe detection and treatment of invasive growth hormone-secreting pituitary adenoma (GHPA) remains challenging. Several transcription factors promoting the epithelial–mesenchymal transition (EMT) can act as cofactors for the transforming growth factor-beta (TGF-ß)/SMAD4. The goal of this study was to investigate the association of SMAD4 expression and clinicopathologic features using a tissue microarray analysis (TMA). The levels of SMAD4 and the related genes of EMT in GHPAs were analyzed by q-PCR and western blot. SMAD4 was strongly expressed in 15/19 cases (78.9%) of invasive GHPA and 10/42 cases (23.8%) of noninvasive GHPA (χ2=10.887,p=0.000). In the high SMAD4 group, a headache was reported in 16/25 cases (64%) compared with 13/36 cases (36.1%) in the low SMAD4 group (χ2=4.565,p=0.032). The progression-free survival (PFS) in the high group was lower than that in the low group (p=0.026). qRT-PCR and western blot analysis further revealed a significant downregulation of E-cadherin and upregulation of N-cadherin and vimentin in the invasive GHPA group. SMAD4 was associated with increased levels of invasion of GH3 cells, as determined by a transwell test. SMAD4 downregulated E-cadherin levels and increased the levels of N-cadherin and vimentin. Our data provide evidence that SMAD4 is a potential prognosis biomarker and a therapeutic target for patients with invasive GHPA.
Collapse
Affiliation(s)
- Xiaosong Shan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qian Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhenye Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Brain Tumor Center, Beijing, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
44
|
Cristóbal I, Torrejón B, Santos A, Luque M, Sanz-Alvarez M, Rojo F, García-Foncillas J. Dissecting the therapeutic implications of the complex SMAD4 regulatory network in metastatic colorectal cancer. Eur J Surg Oncol 2018; 44:1283-1284. [PMID: 29778618 DOI: 10.1016/j.ejso.2018.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.
| | - Blanca Torrejón
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Melani Luque
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | | | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Jesús García-Foncillas
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.
| |
Collapse
|
45
|
Qin G, Wang GZ, Guo DD, Bai RX, Wang M, Du SY. Deletion of Smad4 reduces hepatic inflammation and fibrogenesis during nonalcoholic steatohepatitis progression. J Dig Dis 2018; 19:301-313. [PMID: 29696816 DOI: 10.1111/1751-2980.12599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To explore the effects of mothers against decapentaplegic homolog family member 4 (Smad4) deletion on inflammation and fibrogenesis in nonalcoholic steatohepatitis (NASH). METHODS Biopsied liver samples from NASH patients and normal liver tissue samples from patients who had received liver resection for trauma were collected. Smad4Co/Co and wild-type (WT) mice were used to construct the NASH model using a high-fat diet (HFD) or methionine- and choline-deficient diet (MCD). HE staining and TUNEL assay were used to observe the pathological changes and cell apoptosis, respectively. Quantitative real-time polymerase chain reaction was used to detect the expression of inflammatory, fibrogenesis and apoptosis-related genes, and immunohistochemistry to determine the protein expression of SMAD4, MCP-1 and α-SMA. RESULTS SMAD4 protein expression significantly increased in NASH patients than in the control group. Compared with WT mice, HFD- and MCD-fed Smad4Co/Co mice showed decreased hepatic steatosis, inflammation, liver cell apoptosis and nonalcoholic fatty liver activity score, reduced plasma glucose, triglyceride, free fatty acids, alanine aminotransferase and aspartate aminotransferase levels but increased adiponectin. Moreover, Smad4Co/Co decreased the expression of inflammatory markers (TNF-α, MCP-1, IFN-γ), fibrogenetic markers (COL1A1, α-SMA and TGF-β1), lipogenic (Srebp1c, Fas and Acc) and proapoptotic genes (Bax and caspase-3), but increased the expression of β-oxidation (Ppar-α, Cpt1 and Aco) and antiapoptotic genes (Bcl-2). CONCLUSION Smad4 deletion may inhibit lipogenesis, stimulate β-oxidation, improve lipid metabolism and liver function, alleviate inflammation and fibrosis, and reduce cell apoptosis in NASH.
Collapse
Affiliation(s)
- Geng Qin
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Guo Zhen Wang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Dan Dan Guo
- Department of Ultrasonography, China-Japan Friendship Hospital, Beijing, China
| | - Ru Xue Bai
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Shi Yu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
46
|
Olaizola P, Lee-Law PY, Arbelaiz A, Lapitz A, Perugorria MJ, Bujanda L, Banales JM. MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1293-1307. [PMID: 28711597 DOI: 10.1016/j.bbadis.2017.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
Abstract
UNLABELLED Cholangiopathies encompass a heterogeneous group of disorders affecting biliary epithelial cells (i.e. cholangiocytes). Early diagnosis, prognosis and treatment still remain clinically challenging for most of these diseases and are critical for adequate patient care. In the past decade, extensive research has emphasized microRNAs (miRs) as potential non-invasive biomarkers and tools to accurately identify, predict and treat cholangiopathies. MiRs can be released extracellularly conjugated with lipoproteins or encapsulated in extracellular vesicles (EVs). Research on EVs is also gaining attention since they are present in multiple biological fluids and may represent a relevant source of novel non-invasive biomarkers and be vehicles for new therapeutic approaches. This review highlights the most promising candidate miRs and EV-related biomarkers in cholangiopathies, as well as their relevant roles in biliary pathophysiology. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen. RESEARCH STRATEGY PubMed search (April 2017) was done with the following terms: "microRNA", "miRNA", "miR", "extracellular vesicles", "EV", "exosomes", "primary biliary cholangitis", "primary biliary cholangitis", "PBC", "primary sclerosing cholangitis", "PSC", "cholangiocarcinoma", "CCA", "biliary atresia", "BA", "polycystic liver diseases", "PLD", "cholangiopathies", "cholestatic liver disease". Most significant articles in full-text English were selected. The reference lists of selected papers were also considered.
Collapse
Affiliation(s)
- P Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - P Y Lee-Law
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - A Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - A Lapitz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - M J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - L Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - J M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
47
|
O'Rourke CJ, Munoz-Garrido P, Aguayo EL, Andersen JB. Epigenome dysregulation in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2018. [DOI: 10.1016/j.bbadis.2017.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Molecular Mechanisms Driving Cholangiocarcinoma Invasiveness: An Overview. Gene Expr 2018; 18:31-50. [PMID: 29070148 PMCID: PMC5860940 DOI: 10.3727/105221617x15088670121925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of invasive functions by tumor cells is a first and crucial step toward the development of metastasis, which nowadays represents the main cause of cancer-related death. Cholangiocarcinoma (CCA), a primary liver cancer originating from the biliary epithelium, typically develops intrahepatic or lymph node metastases at early stages, thus preventing the majority of patients from undergoing curative treatments, consistent with their very poor prognosis. As in most carcinomas, CCA cells gradually adopt a motile, mesenchymal-like phenotype, enabling them to cross the basement membrane, detach from the primary tumor, and invade the surrounding stroma. Unfortunately, little is known about the molecular mechanisms that synergistically orchestrate this proinvasive phenotypic switch. Autocrine and paracrine signals (cyto/chemokines, growth factors, and morphogens) permeating the tumor microenvironment undoubtedly play a prominent role in this context. Moreover, a number of recently identified signaling systems are currently drawing attention as putative mechanistic determinants of CCA cell invasion. They encompass transcription factors, protein kinases and phosphatases, ubiquitin ligases, adaptor proteins, and miRNAs, whose aberrant expression may result from either stochastic mutations or the abnormal activation of upstream pro-oncogenic pathways. Herein we sought to summarize the most relevant molecules in this field and to discuss their mechanism of action and potential prognostic relevance in CCA. Hopefully, a deeper knowledge of the molecular determinants of CCA invasiveness will help to identify clinically useful biomarkers and novel druggable targets, with the ultimate goal to develop innovative approaches to the management of this devastating malignancy.
Collapse
Affiliation(s)
- Simone Brivio
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Massimiliano Cadamuro
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
| | - Luca Fabris
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- ‡Department of Molecular Medicine, University of Padua, Padua, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Mario Strazzabosco
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| |
Collapse
|
49
|
Dreyer FS, Cantone M, Eberhardt M, Jaitly T, Walter L, Wittmann J, Gupta SK, Khan FM, Wolkenhauer O, Pützer BM, Jäck HM, Heinzerling L, Vera J. A web platform for the network analysis of high-throughput data in melanoma and its use to investigate mechanisms of resistance to anti-PD1 immunotherapy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2315-2328. [PMID: 29410200 DOI: 10.1016/j.bbadis.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/11/2023]
Abstract
Cellular phenotypes are established and controlled by complex and precisely orchestrated molecular networks. In cancer, mutations and dysregulations of multiple molecular factors perturb the regulation of these networks and lead to malignant transformation. High-throughput technologies are a valuable source of information to establish the complex molecular relationships behind the emergence of malignancy, but full exploitation of this massive amount of data requires bioinformatics tools that rely on network-based analyses. In this report we present the Virtual Melanoma Cell, an online tool developed to facilitate the mining and interpretation of high-throughput data on melanoma by biomedical researches. The platform is based on a comprehensive, manually generated and expert-validated regulatory map composed of signaling pathways important in malignant melanoma. The Virtual Melanoma Cell is a tool designed to accept, visualize and analyze user-generated datasets. It is available at: https://www.vcells.net/melanoma. To illustrate the utilization of the web platform and the regulatory map, we have analyzed a large publicly available dataset accounting for anti-PD1 immunotherapy treatment of malignant melanoma patients.
Collapse
|
50
|
Wangyang Z, Daolin J, Yi X, Zhenglong L, Lining H, Yunfu C, Xingming J. NcRNAs and Cholangiocarcinoma. J Cancer 2018; 9:100-107. [PMID: 29290774 PMCID: PMC5743716 DOI: 10.7150/jca.21785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common primary biliary malignancy with poor prognosis. Less understanding of its etiology and pathogenesis makes the diagnosis and therapy difficult. Recently, accumulating evidences have demonstrated that deregulated expression of non-coding RNAs (ncRNAs) is closely associated with the etiopathogenesis of CCA. NcRNAs which lack open reading frame are a heterogeneous class of transcribed RNA molecules, including microRNAs, long non-coding RNAs and circular RNAs. Several studies have shown ncRNAs dysregulation is a common central event occurring in CCA and has the potential of being therapy targets. Moreover, ncRNAs can be easily detected in cancer tissues and biofluids, representing valuable tools for diagnosis. In this review, we illustrate the role of ncRNA in the CCA and discuss their potential clinical value.
Collapse
Affiliation(s)
- Zheng Wangyang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Ji Daolin
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Xu Yi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Li Zhenglong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Huang Lining
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Cui Yunfu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Jiang Xingming
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| |
Collapse
|