1
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
2
|
Wei R, Thanindratarn P, Dean DC, Hornicek FJ, Guo W, Duan Z. Cyclin E1 is a prognostic biomarker and potential therapeutic target in osteosarcoma. J Orthop Res 2020; 38:1952-1964. [PMID: 32162720 DOI: 10.1002/jor.24659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 02/04/2023]
Abstract
While amplified expressed cyclin E1 is a well-known tumorigenic factor and prognostic biomarker in several malignancies, its prognostic predictive potential and function in osteosarcoma is poorly understood. Here we reveal discrete expression pattern, correlation to clinicopathological characteristics and prognosis and overall function of cyclin E1 in osteosarcoma. Sixty-nine osteosarcoma patient tumor specimens were enrolled to construct a tissue microarray to evaluate cyclin E1 expression through immunohistochemical staining. Cyclin E1 expression in osteosarcoma cell lines and fresh tissues was assessed by Western blot. Cyclin E1 gene expression was evaluated using RNA sequencing data acquired from the public database. We correlated staining intensity to clinical characteristics. Cyclin E1 small interfering RNA was used to determine the effect of cyclin E1 silencing on osteosarcoma cell proliferation and chemotherapeutic sensitivity. Sixty-one percent of the osteosarcoma patient specimens in the tissue microarray had high cyclin E1 expression. Cyclin E1 gene was significantly highly expressed in osteosarcoma tissues and cell lines compared to normal tissues. The expression of cyclin E1 positively correlated with disease status, and inversely correlated to prognosis and response to neoadjuvant chemotherapy. The expression of cyclin E1 was an independent prognostic factor for osteosarcoma patients. In addition, silencing cyclin E1 expression in osteosarcoma cells significantly inhibited cell proliferation and increased sensitivity to chemotherapeutics. We conclude that cyclin E1 is overexpressed in osteosarcoma and is a promising biomarker for prognosis and chemotherapeutic response. We confirm aberrant cyclin E1 expression is a potent therapeutic target in osteosarcoma, and its selective inhibition is a rational treatment strategy for osteosarcoma.
Collapse
Affiliation(s)
- Ran Wei
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Pichaya Thanindratarn
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California.,Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - Dylan C Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Wei Guo
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
3
|
Hidalgo P, Ip WH, Dobner T, Gonzalez RA. The biology of the adenovirus E1B 55K protein. FEBS Lett 2019; 593:3504-3517. [PMID: 31769868 DOI: 10.1002/1873-3468.13694] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022]
Abstract
The adenovirus E1B 55K (E1B) protein plays major roles in productive adenoviral infection and cellular transformation. Interest in E1B increased because of the potential of adenoviruses as therapeutic vectors, and the E1B gene is commonly deleted from adenovirus vectors for anticancer therapy. E1B activities are spatiotemporally regulated through SUMOylation and phosphorylation, and through interactions with multiple partners that occur presumably at different intracellular sites and times postinfection. E1B is implicated in the formation of viral replication compartments and regulates viral genome replication and transcription, transcriptional repression, degradation of cellular proteins, and several intranuclear steps of viral late mRNA biogenesis. Here, we review advances in our understanding of E1B during productive adenovirus replication and discuss fundamental aspects that remain unresolved.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
4
|
González-Pastor R, Ashshi AM, El-Shemi AG, Dmitriev IP, Kashentseva EA, Lu ZH, Goedegebuure SP, Podhajcer OL, Curiel DT. Defining a murine ovarian cancer model for the evaluation of conditionally-replicative adenovirus (CRAd) virotherapy agents. J Ovarian Res 2019; 12:18. [PMID: 30767772 PMCID: PMC6376676 DOI: 10.1186/s13048-019-0493-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/05/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Virotherapy represents a promising approach for ovarian cancer. In this regard, conditionally replicative adenovirus (CRAd) has been translated to the context of human clinical trials. Advanced design of CRAds has sought to exploit their capacity to induce anti-tumor immunization by configuring immunoregulatory molecule within the CRAd genome. Unfortunately, employed murine xenograft models do not allow full analysis of the immunologic activity linked to CRAd replication. RESULTS We developed CRAds based on the Ad5/3-Delta24 design encoding cytokines. Whereas the encoded cytokines did not impact adversely CRAd-induced oncolysis in vitro, no gain in anti-tumor activity was noted in immune-incompetent murine models with human ovarian cancer xenografts. On this basis, we explored the potential utility of the murine syngeneic immunocompetent ID8 ovarian cancer model. Of note, the ID8 murine ovarian cancer cell lines exhibited CRAd-mediated cytolysis. The use of this model now enables the rational design of oncolytic agents to achieve anti-tumor immunotherapy. CONCLUSIONS Limits of widely employed murine xenograft models of ovarian cancer limit their utility for design and study of armed CRAd virotherapy agents. The ID8 model exhibited CRAd-induced oncolysis. This feature predicate its potential utility for the study of CRAd-based virotherapy agents.
Collapse
Affiliation(s)
- Rebeca González-Pastor
- The Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Ahmad Mohammad Ashshi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Igor P Dmitriev
- The Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Elena A Kashentseva
- The Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Zhi Hong Lu
- The Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Alvin J. Siteman Cancer Center, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Osvaldo L Podhajcer
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - David T Curiel
- The Division of Cancer Biology and Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Wechman SL, Rao XM, Gomez-Gutierrez JG, Zhou HS, McMasters KM. The role of JNK phosphorylation as a molecular target to enhance adenovirus replication, oncolysis and cancer therapeutic efficacy. Cancer Biol Ther 2018; 19:1174-1184. [PMID: 30067431 PMCID: PMC6301809 DOI: 10.1080/15384047.2018.1491503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 01/17/2023] Open
Abstract
Oncolytic adenoviruses (Ads) are cancer selective tumoricidal agents; however their mechanism of Ad-mediated cancer cell lysis, or oncolysis, remains undefined. This report focuses upon the autophagy mediator c-JUN n-terminal kinase (JNK) and its effects upon Ad oncolysis and replication. Previously, E1b-deleted Ads have been used to treat several hundred cancer patients with limited clinical efficacy. We hypothesize that by studying the potential interactions between E1b and JNK, mechanisms to improve oncolytic Ad design and cancer therapeutic efficacy may be elucidated. To test this hypothesis, E1b was selectively deleted from the Ad genome. These studies indicated that Ads encoding E1b induced JNK phosphorylation predominately occurred via E1b-19K. The expression of another crucial Ad gene E1a was then overexpressed by the CMV promoter via the replication competent Ad vector Adhz69; these data indicated that E1A also induced JNK phosphorylation. To assess the effects of host cell JNK expression upon Ad oncolysis and replication, siRNA targeting JNK1 and JNK2 (JNK1/2) were utilized. The oncolysis and replication of the E1b-19K wild-type Ads Ad5 and Adhz63 were significantly attenuated following JNK1/2 siRNA transfection. However the oncolytic effects and replication of the E1b-19K deleted Ad Adhz60 were not altered by JNK1/2 siRNA transfection, further implicating the crucial role of E1b-19K for Ad oncolysis and replication via JNK phosphorylation. This study has demonstrated for the first time that JNK is an intriguing molecular marker associated with enhanced Ad virotherapy efficacy, influencing future Ad vector design.
Collapse
Affiliation(s)
- Stephen L. Wechman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiao-Mei Rao
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jorge G. Gomez-Gutierrez
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Heshan Sam Zhou
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kelly M. McMasters
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
6
|
Garza-Morales R, Yaddanapudi K, Perez-Hernandez R, Riedinger E, McMasters KM, Shirwan H, Yolcu E, Montes de Oca-Luna R, Gomez-Gutierrez JG. Temozolomide renders murine cancer cells susceptible to oncolytic adenovirus replication and oncolysis. Cancer Biol Ther 2018; 19:188-197. [PMID: 29252087 PMCID: PMC5836815 DOI: 10.1080/15384047.2017.1416274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
The preclinical evaluation of oncolytic adenoviruses (OAds) has been limited to cancer xenograft mouse models because OAds replicate poorly in murine cancer cells. The alkylating agent temozolomide (TMZ) has been shown to enhance oncolytic virotherapy in human cancer cells; therefore, we investigated whether TMZ could increase OAd replication and oncolysis in murine cancer cells. To test our hypothesis, three murine cancer cells were infected with OAd (E1b-deleted) alone or in combination with TMZ. TMZ increased OAd-mediated oncolysis in all three murine cancer cells tested. This increased oncolysis was, at least in part, due to productive virus replication, apoptosis, and autophagy induction. Most importantly, murine lung non-cancerous cells were not affected by OAd+TMZ. Moreover, TMZ increased Ad transduction efficiency. However, TMZ did not increase coxsackievirus and adenovirus receptor; therefore, other mechanism could be implicated on the transduction efficiency. These results showed, for the first time, that TMZ could render murine tumor cells more susceptible to oncolytic virotherapy. The proposed combination of OAds with TMZ presents an attractive approach towards the evaluation of OAd potency and safety in syngeneic mouse models using these murine cancer cell-lines in vivo.
Collapse
Affiliation(s)
- Rodolfo Garza-Morales
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, N.L. México
| | - Kavitha Yaddanapudi
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rigoberto Perez-Hernandez
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Eric Riedinger
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kelly M. McMasters
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Haval Shirwan
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Esma Yolcu
- Department of Microbiology and Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY, USA
| | - Roberto Montes de Oca-Luna
- Department of Histology, School of Medicine, Autonomous University of Nuevo León, Monterrey, N.L. México
| | - Jorge G. Gomez-Gutierrez
- The Hiram C. Polk Jr, MD, Department of Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
7
|
Martinez-Jaramillo E, Garza-Morales R, Wechman SL, Montes de Oca-Luna R, Saucedo-Cardenas O, Shirwan H, Yolcu E, McMasters KM, Gomez-Gutierrez JG. Adenovirus Lacking E1b Efficiently Induces Cytopathic Effect in HPV-16-Positive Murine Cancer Cells via Virus Replication and Apoptosis. Cancer Invest 2018; 36:19-27. [PMID: 29388837 DOI: 10.1080/07357907.2018.1430812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Conditionally replicative adenoviruses (CRAds) replicate poorly in murine cancer cells; however, E1b-deleted CRAds may replicate effectively in HPV16-E6/E7-positive murine cancer cells (TC-1). The HPV16 E7 open reading frame encodes functions analogous to these deleted adenovirus E1 proteins. In this study, an E1b-deleted CRAd (Adhz60) was evaluated for its ability to replicate and induce oncolysis in TC-1 cells. Adhz60-mediated oncolysis was similar in TC-1 and HeLa cells. Productive viral replication was evident based on expression of E1A and hexon, production of infectious virus progeny, and Adhz60-induced apoptosis. The results suggest that TC-1 murine cancer cells allow Adhz60 replication and oncolysis.
Collapse
Affiliation(s)
- Elvis Martinez-Jaramillo
- a The Hiram C. Polk Jr., MD, Department of Surgery , University of Louisville School of Medicine , Louisville , USA.,b Department of Histology, School of Medicine , Autonomous University of Nuevo León , Monterrey , N.L. México
| | - Rodolfo Garza-Morales
- a The Hiram C. Polk Jr., MD, Department of Surgery , University of Louisville School of Medicine , Louisville , USA.,b Department of Histology, School of Medicine , Autonomous University of Nuevo León , Monterrey , N.L. México
| | - Stephen L Wechman
- a The Hiram C. Polk Jr., MD, Department of Surgery , University of Louisville School of Medicine , Louisville , USA
| | - Roberto Montes de Oca-Luna
- b Department of Histology, School of Medicine , Autonomous University of Nuevo León , Monterrey , N.L. México
| | - Odila Saucedo-Cardenas
- b Department of Histology, School of Medicine , Autonomous University of Nuevo León , Monterrey , N.L. México.,e Department of Molecular Genetics, Northeast Biomedical Research Center , Mexican Institute of Social Security (IMSS) , Monterrey , N.L. México
| | - Haval Shirwan
- c Department of Microbiology and Immunology, Institute for Cellular Therapeutics , University of Louisville , Louisville , USA
| | - Esma Yolcu
- c Department of Microbiology and Immunology, Institute for Cellular Therapeutics , University of Louisville , Louisville , USA
| | - Kelly M McMasters
- a The Hiram C. Polk Jr., MD, Department of Surgery , University of Louisville School of Medicine , Louisville , USA.,d James Graham Brown Cancer Center , University of Louisville School of Medicine , Louisville , USA
| | - Jorge G Gomez-Gutierrez
- a The Hiram C. Polk Jr., MD, Department of Surgery , University of Louisville School of Medicine , Louisville , USA.,d James Graham Brown Cancer Center , University of Louisville School of Medicine , Louisville , USA
| |
Collapse
|
8
|
Wechman SL, Rao XM, McMasters KM, Zhou HS. Adenovirus with DNA Packaging Gene Mutations Increased Virus Release. Viruses 2016; 8:v8120333. [PMID: 27999391 PMCID: PMC5192394 DOI: 10.3390/v8120333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022] Open
Abstract
Adenoviruses (Ads) have been extensively manipulated for the development of cancer selective replication, leading to cancer cell death or oncolysis. Clinical studies using E1-modified oncolytic Ads have shown that this therapeutic platform was safe, but with limited efficacy, indicating the necessity of targeting other viral genes for manipulation. To improve the therapeutic efficacy of oncolytic Ads, we treated the entire Ad genome repeatedly with UV-light and have isolated AdUV which efficiently lyses cancer cells as reported previously (Wechman, S. L. et al. Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection. Viruses2016, 8, 6). In this report, we show that no mutations were observed in the early genes (E1 or E4) of AdUV while several mutations were observed within the Ad late genes which have structural or viral DNA packaging functions. This study also reported the increased release of AdUV from cancer cells. In this study, we found that AdUV inhibits tumor growth following intratumoral injection. These results indicate the potentially significant role of the viral late genes, in particular the DNA packaging genes, to enhance Ad oncolysis.
Collapse
Affiliation(s)
- Stephen L Wechman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Xiao-Mei Rao
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Kelly M McMasters
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Heshan Sam Zhou
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
9
|
Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection. Viruses 2016; 8:v8060167. [PMID: 27314377 PMCID: PMC4926187 DOI: 10.3390/v8060167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
Oncolytic adenoviruses (Ads) have been shown to be safe and have great potential for the treatment of solid tumors. However, the therapeutic efficacy of Ads is antagonized by limited spread within solid tumors. To develop Ads with enhanced spread, viral particles of an E1-wildtype Ad5 dl309 was repeatedly treated with UV type C irradiation and selected for the efficient replication and release from cancer cells. After 72 cycles of treatment and cancer selection, AdUV was isolated. This vector has displayed many favorable characteristics for oncolytic therapy. AdUV was shown to lyse cancer cells more effectively than both E1-deleted and E1-wildtype Ads. This enhanced cancer cell lysis appeared to be related to increased AdUV replication in and release from infected cancer cells. AdUV-treated A549 cells displayed greater expression of the autophagy marker LC3-II during oncolysis and formed larger viral plaques upon cancer cell monolayers, indicating increased virus spread among cancer cells. This study indicates the potential of this approach of irradiation of entire viral particles for the development of oncolytic viruses with designated therapeutic properties.
Collapse
|
10
|
Cheng PH, Wechman SL, McMasters KM, Zhou HS. Oncolytic Replication of E1b-Deleted Adenoviruses. Viruses 2015; 7:5767-79. [PMID: 26561828 PMCID: PMC4664978 DOI: 10.3390/v7112905] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/30/2023] Open
Abstract
Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads) are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viral mRNA export, and cell cycle disruption.
Collapse
Affiliation(s)
- Pei-Hsin Cheng
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stephen L Wechman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Kelly M McMasters
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Heshan Sam Zhou
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|