1
|
Ali RH, Alsaber AR, Mohanty AK, Alnajjar A, Mohammed EMA, Alateeqi M, Jama H, Almarzooq A, Benobaid N, Alqallaf Z, Ahmed AA, Bahzad S, Alkandari M. Molecular Profiling of KIT/PDGFRA-Mutant and Wild-Type Gastrointestinal Stromal Tumors (GISTs) with Clinicopathological Correlation: An 18-Year Experience at a Tertiary Center in Kuwait. Cancers (Basel) 2024; 16:2907. [PMID: 39199677 PMCID: PMC11352935 DOI: 10.3390/cancers16162907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
In gastrointestinal stromal tumors (GISTs), identifying prototypical mutations in the KIT/PDGFRA oncogenes, or in rare alternate genes, is essential for prognostication and predicting response to tyrosine kinase inhibitors. Conversely, wild-type GISTs (WT-GIST), which lack known mutations, have limited treatment options. Data on the mutational landscape of GISTs and their impact on disease progression are very limited in Kuwait. Using a targeted next-generation sequencing panel, we investigated the spectrum and frequency of KIT, PDGFRA, and RAS-pathway-related mutations in 95 out of 200 GISTs diagnosed at Kuwait Cancer Center from 2005 to 2023 and assessed their correlation with clinicopathological parameters. Among the 200 tumors (median age 55 years; 15-91), 54% originated in the stomach, 33% in the small bowel, 7% in the colorectum, 1.5% in the peritoneum, and 4.5% had an unknown primary site. Of the 95 molecularly profiled cases, 88% had a mutation: KIT (61%), PDGFRA (25%), NF1 (2%), and one NTRK1 rearrangement. Ten WT-GISTs were identified (stomach = 6, small bowel = 2, and colorectum = 2). WT-GISTs tended to be smaller (median 4.0 cm; 0.5-8.0) (p = 0.018), with mitosis ≤5/5 mm2, and were of lower risk (p = 0.019). KIT mutations were an adverse indicator of disease progression (p = 0.049), while wild-type status did not significantly impact progression (p = 0.934). The genetic landscape in this cohort mirrors that of global studies, but regional collaborations are needed to correlate outcomes with genetic variants.
Collapse
Affiliation(s)
- Rola H. Ali
- Department of Pathology, College of Medicine, Kuwait University, Safat 13110, Kuwait
- Histopathology Laboratory, Sabah Hospital, Sabah Medical District, Safat 13001, Kuwait
| | - Ahmad R. Alsaber
- Department of Management, College of Business and Economics, American University of Kuwait, Safat 13034, Kuwait;
| | - Asit K. Mohanty
- Department of Medical Oncology, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (A.K.M.); (A.A.)
| | - Abdulsalam Alnajjar
- Department of Medical Oncology, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (A.K.M.); (A.A.)
| | - Eiman M. A. Mohammed
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Mona Alateeqi
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Hiba Jama
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Ammar Almarzooq
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Noelle Benobaid
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Zainab Alqallaf
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Amir A. Ahmed
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Shakir Bahzad
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Mohammad Alkandari
- Histopathology Laboratory, Farwaniya Hospital, Sabah Al Nasser Area 92426, Kuwait;
| |
Collapse
|
2
|
Denu RA, Joseph CP, Urquiola ES, Byrd PS, Yang RK, Ratan R, Zarzour MA, Conley AP, Araujo DM, Ravi V, Nassif Haddad EF, Nakazawa MS, Patel S, Wang WL, Lazar AJ, Somaiah N. Utility of Clinical Next Generation Sequencing Tests in KIT/PDGFRA/SDH Wild-Type Gastrointestinal Stromal Tumors. Cancers (Basel) 2024; 16:1707. [PMID: 38730662 PMCID: PMC11083047 DOI: 10.3390/cancers16091707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Objective: The vast majority of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in KIT, PDGFRA, or components of the succinate dehydrogenase (SDH) complex (SDHA, SDHB, SDHC, and SDHD genes). A small fraction of GISTs lack alterations in KIT, PDGFRA, and SDH. We aimed to further characterize the clinical and genomic characteristics of these so-called "triple-negative" GISTs. Methods: We extracted clinical and genomic data from patients seen at MD Anderson Cancer Center with a diagnosis of GIST and available clinical next generation sequencing data to identify "triple-negative" patients. Results: Of the 20 patients identified, 11 (55.0%) had gastric, 8 (40.0%) had small intestinal, and 1 (5.0%) had rectal primary sites. In total, 18 patients (90.0%) eventually developed recurrent or metastatic disease, and 8 of these presented with de novo metastatic disease. For the 13 patients with evaluable response to imatinib (e.g., neoadjuvant treatment or for recurrent/metastatic disease), the median PFS with imatinib was 4.4 months (range 0.5-191.8 months). Outcomes varied widely, as some patients rapidly developed progressive disease while others had more indolent disease. Regarding potential genomic drivers, four patients were found to have alterations in the RAS/RAF/MAPK pathway: two with a BRAF V600E mutation and two with NF1 loss-of-function (LOF) mutations (one deletion and one splice site mutation). In addition, we identified two with TP53 LOF mutations, one with NTRK3 fusion (ETV6-NTRK3), one with PTEN deletion, one with FGFR1 gain-of-function (GOF) mutation (K654E), one with CHEK2 LOF mutation (T367fs*), one with Aurora kinase A fusion (AURKA-CSTF1), and one with FANCA deletion. Patients had better responses with molecularly targeted therapies than with imatinib. Conclusions: Triple-negative GISTs comprise a diverse cohort with different driver mutations. Compared to KIT/PDGFRA-mutant GIST, limited benefit was observed with imatinib in triple-negative GIST. In depth molecular profiling can be helpful in identifying driver mutations and guiding therapy.
Collapse
Affiliation(s)
- Ryan A. Denu
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cissimol P. Joseph
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth S. Urquiola
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Precious S. Byrd
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard K. Yang
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Alejandra Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anthony P. Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dejka M. Araujo
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elise F. Nassif Haddad
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael S. Nakazawa
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Lien Wang
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander J. Lazar
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
von Mehren M, Kane JM, Riedel RF, Sicklick JK, Pollack SM, Agulnik M, Bui MM, Carr-Ascher J, Choy E, Connelly M, Dry S, Ganjoo KN, Gonzalez RJ, Holder A, Homsi J, Keedy V, Kelly CM, Kim E, Liebner D, McCarter M, McGarry SV, Mesko NW, Meyer C, Pappo AS, Parkes AM, Petersen IA, Poppe M, Schuetze S, Shabason J, Spraker MB, Zimel M, Bergman MA, Sundar H, Hang LE. NCCN Guidelines® Insights: Gastrointestinal Stromal Tumors, Version 2.2022. J Natl Compr Canc Netw 2022; 20:1204-1214. [PMID: 36351335 PMCID: PMC10245542 DOI: 10.6004/jnccn.2022.0058] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gastrointestinal stromal tumors (GIST) are the most common type of soft tissue sarcoma that occur throughout the gastrointestinal tract. Most of these tumors are caused by oncogenic activating mutations in the KIT or PDGFRA genes. The NCCN Guidelines for GIST provide recommendations for the diagnosis, evaluation, treatment, and follow-up of patients with these tumors. These NCCN Guidelines Insights summarize the panel discussion behind recent important updates to the guidelines, including revised systemic therapy options for unresectable, progressive, or metastatic GIST based on mutational status, and updated recommendations for the management of GIST that develop resistance to specific tyrosine kinase inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Seth M Pollack
- 5Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | - Edwin Choy
- 9Massachusetts General Hospital Cancer Center
| | - Mary Connelly
- 10The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Sarah Dry
- 11UCLA Jonsson Comprehensive Cancer Center
| | | | | | | | - Jade Homsi
- 14UT Southwestern Simmons Comprehensive Cancer Center
| | | | | | | | - David Liebner
- 10The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | - Nathan W Mesko
- 20Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | - Christian Meyer
- 21The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Alberto S Pappo
- 22St. Jude Children's Research Hospital/University of Tennessee Health Science Center
| | | | | | - Matthew Poppe
- 25Huntsman Cancer Institute at the University of Utah
| | | | - Jacob Shabason
- 27Abramson Cancer Center at the University of Pennsylvania
| | - Matthew B Spraker
- 28Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | - Melissa Zimel
- 29UCSF Helen Diller Family Comprehensive Cancer Center; and
| | | | | | | |
Collapse
|
4
|
Gastrointestinal Stromal Tumors Mimicking Gynecologic Disease: Clinicopathological Analysis of 20 Cases. Diagnostics (Basel) 2022; 12:diagnostics12071563. [PMID: 35885469 PMCID: PMC9319443 DOI: 10.3390/diagnostics12071563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022] Open
Abstract
Diagnosis of pelvic gastrointestinal stromal tumors (GISTs) can be challenging because of their nonspecific presentation and similarity to gynecological neoplasms. In this series, we describe the clinicopathological features of 20 GIST cases: 18 patients presented with pelvic mass and/or abdominal pain concerning gynecological disease; 2 patients presented with a posterior rectovaginal mass or an anorectal mass. Total abdominal hysterectomy and/or salpingo-oophorectomy (unilateral or bilateral) were performed in 13 cases. Gross and histological examination revealed that the ovary/ovaries were involved in three cases, the uterus in two cases, the vagina in two cases and the broad ligament in one case. Immunohistochemically, all tumors (20/20, 100%) were diffusely immunoreactive for c-KIT. The tumor cells were also diffusely positive for DOG-1 (10/10, 100%) and displayed focal to diffuse positivity for CD34 (11/12, 92%). Desmin was focally and weakly expressed in 1 of the 14 tested tumors (1/14, 7%), whereas 2 of 8 tumors (2/8, 25%) showed focal SMA positivity. At the molecular level, 7 of 8 (87.5%) GISTs with molecular analysis contained c-KIT mutations with the second and third c-KIT mutations detected in some recurrent tumors. In addition to c-KIT mutation, a pathogenic RB1 mutation was detected in two cases. We extensively discussed these cases focusing on their differential diagnosis described by the submitting pathologists during consultation. Our study emphasizes the importance of precision diagnosis of GISTs. Alertness to this entity in unusual locations, in combination with clinical history, morphological features as well as immunophenotype, is crucial in leading to a definitive classification.
Collapse
|
5
|
Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nat Rev Clin Oncol 2022; 19:328-341. [PMID: 35217782 PMCID: PMC11488293 DOI: 10.1038/s41571-022-00606-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
When gastrointestinal stromal tumour (GIST), the most common form of sarcoma, was first recognized as a distinct pathological entity in the 1990s, patients with advanced-stage disease had a very poor prognosis owing to a lack of effective medical therapies. The discovery of KIT mutations as the first and most prevalent drivers of GIST and the subsequent development of the first KIT tyrosine kinase inhibitor (TKI), imatinib, revolutionized the treatment of patients with this disease. We can now identify the driver mutation in 99% of patients with GIST via molecular diagnostic testing, and therapies have been developed to treat many, but not all, molecular subtypes of the disease. At present, seven drugs are approved by the FDA for the treatment of advanced-stage GIST (imatinib, sunitinib, regorafenib, ripretinib, avapritinib, larotrectinib and entrectinib), all of which are TKIs. Although these agents can be very effective for treating certain GIST subtypes, challenges remain and new therapeutic approaches are needed. In this Review, we discuss the molecular subtypes of GIST and the evolution of current treatments, as well as their therapeutic limitations. We also highlight emerging therapeutic approaches that might overcome clinical challenges through novel strategies predicated on the biological features of the distinct GIST molecular subtypes.
Collapse
Affiliation(s)
- Lillian R Klug
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Homma M Khosroyani
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jason D Kent
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael C Heinrich
- Portland VA Health Care System and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Dermawan JK, Rubin BP. Molecular Pathogenesis of Gastrointestinal Stromal Tumor: A Paradigm for Personalized Medicine. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:323-344. [PMID: 34736340 DOI: 10.1146/annurev-pathol-042220-021510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past three to four decades, the molecular pathogenesis of gastrointestinal stromal tumors (GISTs) has been elucidated in great detail. In this review, we discuss the biological genesis of GISTs, identification of the various primary activating driver mutations (focusing on KIT and PDGFRA), oncogene addiction and targeted therapies with imatinib and other tyrosine kinase inhibitors, and the subsequent characterization of the various mechanisms of drug resistance. We illustrate how GIST has become a quintessential paradigm for personalized medicine. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Josephine K Dermawan
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; ,
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; ,
| |
Collapse
|
7
|
Feng Y, Yao S, Pu Z, Cheng H, Fei B, Zou J, Huang Z. Identification of New Tumor-Related Gene Mutations in Chinese Gastrointestinal Stromal Tumors. Front Cell Dev Biol 2021; 9:764275. [PMID: 34805171 PMCID: PMC8595335 DOI: 10.3389/fcell.2021.764275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. As the main GIST drivers, gain-of-function mutations in KIT or PDGFRA are closely associated with not only tumor development and progression but also therapeutic response. In addition to the status of KIT and PDGFRA, little is known about other potential GIST-related genes. In this study, we identified the mutation profiles in 49 KIT-mutated GIST tumors using the whole exome sequencing (WES) method. Furthermore, some representative mutations were further validated in an independent GIST cohort using the SNaPshot SNP assay. We identified extensive and diverse mutations of KIT in GIST, including many undescribed variants. In addition, we revealed some new tumor-related gene mutations with unknown pathogenicity. By enrichment analyses of gene function and protein-protein interaction network construction, we showed that these genes were enriched in several important cancer- or metabolism-related signaling pathways, including PI3K-AKT,RTK-RAS, Notch, Wnt, Hippo, mTOR, AMPK, and insulin signaling. In particular, DNA repair-related genes, including MLH1, MSH6, BRCA1, BRCA2, and POLE, are frequently mutated in GISTs, suggesting that immune checkpoint blockade may have promising clinical applications for these GIST subpopulations. In conclusion, in addition to extensive and diverse mutations of KIT, some genes related to DNA-repair and cell metabolism may play important roles in the development, progression and therapeutic response of GIST.
Collapse
Affiliation(s)
- Yuyang Feng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhening Pu
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Han Cheng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Brčić I, Argyropoulos A, Liegl-Atzwanger B. Update on Molecular Genetics of Gastrointestinal Stromal Tumors. Diagnostics (Basel) 2021; 11:194. [PMID: 33525726 PMCID: PMC7912114 DOI: 10.3390/diagnostics11020194] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. The majority are sporadic, solitary tumors that harbor mutually exclusive KIT or PDGFRA gain-of-function mutations. The type of mutation in addition to risk stratification corresponds to the biological behavior of GIST and response to treatment. Up to 85% of pediatric GISTs and 10-15% of adult GISTs are devoid of these (KIT/PDGFRA) mutations and are referred to as wild-type GISTs (wt-GIST). It has been shown that these wt-GISTs are a heterogeneous tumor group with regard to their clinical behavior and molecular profile. Recent advances in molecular pathology helped to further sub-classify the so-called "wt-GISTs". Based on their significant clinical and molecular heterogeneity, wt-GISTs are divided into a syndromic and a non-syndromic (sporadic) subgroup. Recently, the use of succinate dehydrogenase B (SDHB) by immunohistochemistry has been used to stratify GIST into an SDHB-retained and an SDHB-deficient group. In this review, we focus on GIST sub-classification based on clinicopathologic, and molecular findings and discuss the known and yet emerging prognostic and predictive genetic alterations. We also give insights into the limitations of targeted therapy and highlight the mechanisms of secondary resistance.
Collapse
Affiliation(s)
| | | | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (I.B.); (A.A.)
| |
Collapse
|
9
|
Wu J, Zhou H, Yi X, He Q, Lei T, Tan F, Liu H, Li B. Targeted Deep Sequencing Reveals Unrecognized KIT Mutation Coexistent with NF1 Deficiency in GISTs. Cancer Manag Res 2021; 13:297-306. [PMID: 33469372 PMCID: PMC7811451 DOI: 10.2147/cmar.s280174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/10/2020] [Indexed: 01/16/2023] Open
Abstract
Purpose NF1-deficient GISTs account for about 1% of gastrointestinal stromal tumors (GISTs) and are usually considered as a subtype of KIT/PDGFRA wild-type GISTs that have no detectable KIT and PDGFRA mutations. Some KIT/PDGFRA wild-type GISTs actually have cryptic KIT mutations (mKIT). So we investigate whether concurrent mKIT existed in NF1-associated GISTs. Patients and Methods Three independent cohorts were retrospectively analyzed. KIT/PDGFRA wild-type GISTs in Xiangya Hospital between May 2017 and Oct 2019 were investigated by next-generation sequencing (NGS) approach targeted 1021 cancer-related genes regions. GISTs cases in Gene+ dataset from May 2017 to May 2020 were collected from the platform of this company. The genotypes of GISTs in MSKCC cohort were downloaded from cBioPortal. Results A total of 290 cases including 23 KIT/PDGFRA wild-type GISTs in Xiangya Hospital, 136 GISTs in Gene+ database, and 131 GISTs in MSKCC were enrolled. Twenty-six cases have NF1 mutations (mNF1), and 48% (12/26) of NF1-mutated GISTs have concurrent mKIT. Compared with MSKCC (2/10, 20%), a higher ratio of mKIT in NF1-associated GISTs was detected in Xiangya Hospital (3/5, 60%) and Gene+ (7/11, 64%) (p<0.05). No mutation hotspot existed in mNF1. Most of mKIT centered within exon 11 (7/12, 58%) and others including exon 17 (3/12, 25%), exon 9(1/12, 8%), exon 13 (1/12, 8%) and exon 21 (1/12, 8%). No differences in age, gender, and location were detected between NF1-related GISTs with mKIT and those without mKIT. Three GIST cases of type I neurofibromatosis, skin neurofibromas and micro-GISTs (≤1 cm) were devoid of mKIT, but all the mini-GISTs (1~2 cm) and clinic GIST lesions (>2 cm) in two cases harbored mKIT. Conclusion mKIT was not unusual in NF1-associated GISTs, especially in Chinese populations. The gain-of-function mKIT possibly facilitated the progression of NF1-deficient lesions to clinic GISTs, however, the underlying mechanism warrants further studies.
Collapse
Affiliation(s)
- Jinchun Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Qiongzhi He
- Geneplus-Beijing Institute, Beijing, People's Republic of China
| | - Tianxiang Lei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Heli Liu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
10
|
Vanden Bempt I, Vander Borght S, Sciot R, Spans L, Claerhout S, Brems H, Lehnert S, Dehaspe L, Fransis S, Neuville B, Topal B, Schöffski P, Legius E, Debiec-Rychter M. Comprehensive targeted next-generation sequencing approach in the molecular diagnosis of gastrointestinal stromal tumor. Genes Chromosomes Cancer 2020; 60:239-249. [PMID: 33258138 DOI: 10.1002/gcc.22923] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/26/2022] Open
Abstract
Mutational analysis guides therapeutic decision making in patients with advanced-stage gastrointestinal stromal tumors (GISTs). We evaluated three targeted next-generation sequencing (NGS) assays, consecutively used over 4 years in our laboratory for mutational analysis of 162 primary GISTs: Agilent GIST MASTR, Illumina TruSight 26 and an in-house developed 96 gene panels. In addition, we investigated the feasibility of a more comprehensive approach by adding targeted RNA sequencing (Archer FusionPlex, 11 genes) in an attempt to reduce the number of Wild Type GISTs. We found KIT or PDGFRA mutations in 149 out of 162 GISTs (92.0%). Challenging KIT exon 11 alterations were initially missed by different assays in seven GISTs and typically represented deletions at the KIT intron 10-exon 11 boundary or large insertions/deletions (>24 base pairs). Comprehensive analysis led to the additional identification of driver alterations in 8/162 GISTs (4.9%): apart from BRAF and SDHA mutations (one case each), we found five GISTs harboring somatic neurofibromatosis type 1 (NF1) alterations (3.1%) and one case with an in-frame TRIM4-BRAF fusion not reported in GIST before. Eventually, no driver alteration was found in two out of 162 GISTs (1.2%) and three samples (1.9%) failed analysis. Our study shows that a comprehensive targeted NGS approach is feasible for routine mutational analysis of GIST, thereby substantially reducing the number of Wild Type GISTs, and highlights the need to optimize assays for challenging KIT exon 11 alterations.
Collapse
Affiliation(s)
- Isabelle Vanden Bempt
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Sara Vander Borght
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Lien Spans
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Sofie Claerhout
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Hilde Brems
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Stefan Lehnert
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Luc Dehaspe
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Sabine Fransis
- Department of Pathology, Ziekenhuis Oost Limburg, Genk, Belgium
| | - Bart Neuville
- Department of Gastroenterology and Hepatology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Baki Topal
- Department of Abdominal Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Patrick Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, and Department of Oncology, KU Leuven, Laboratory of Experimental Oncology, Leuven, Belgium.,Department of Oncology, KU Leuven, Laboratory of Experimental Oncology, Leuven, Belgium
| | - Eric Legius
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Maria Debiec-Rychter
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Wong NACS, Giger OT, Ten Hoopen R, Casey RT, Russell K, Faulkner C. Next-generation sequencing demonstrates the rarity of short kinase variants specific to quadruple wild-type gastrointestinal stromal tumours. J Clin Pathol 2020; 74:194-197. [PMID: 32646927 DOI: 10.1136/jclinpath-2020-206613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/12/2020] [Accepted: 06/20/2020] [Indexed: 11/04/2022]
Abstract
AIM There is no known specific biomarker or genetic signal for quadruple wild-type (qWT) gastrointestinal stromal tumours (GISTs). By next-generation sequencing (NGS) of different GIST subgroups, this study aimed to characterise such a biomarker especially as a potential therapeutic target. METHODS AND RESULTS An NGS panel of 672 kinase genes was applied to DNA extracted from 11 wild-type GISTs (including three qWT GISTs) and 5 KIT/PDGFRA mutated GISTs. Short variants which were present in qWT GISTs but no other GIST subgroup were shortlisted. After removing common population variants, in silico-classified deleterious variants were found in CSNK2A1, MERTK, RHEB, ROCK1, PIKFYVE and TRRAP. None of these variants were demonstrated in a separate cohort of four qWT GISTs. CONCLUSIONS Short kinase variants which are specific to qWT GISTs are rare and are not universally demonstrated by this whole subgroup. It is therefore possible that the current definition of qWT GIST still covers a heterogenous population.
Collapse
Affiliation(s)
- Newton A C S Wong
- Department of Cellular Pathology, Southmead Hospital, Bristol, UK .,South West Genomic Laboratory Hub, Southmead Hospital, Bristol, UK
| | - Olivier T Giger
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Ruth T Casey
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Kirsty Russell
- South West Genomic Laboratory Hub, Southmead Hospital, Bristol, UK
| | - Claire Faulkner
- South West Genomic Laboratory Hub, Southmead Hospital, Bristol, UK
| |
Collapse
|
12
|
Astolfi A, Pantaleo MA, Indio V, Urbini M, Nannini M. The Emerging Role of the FGF/FGFR Pathway in Gastrointestinal Stromal Tumor. Int J Mol Sci 2020; 21:E3313. [PMID: 32392832 PMCID: PMC7246647 DOI: 10.3390/ijms21093313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal stromal tumors (GIST) are rare neoplasms of mesenchymal origin arising in the gastrointestinal tract. The vast majority are characterized by mutually exclusive activating mutations in KIT or Platelet-derived growth factor alpha (PDGFRA) receptors, or less frequently by succinate dehydrogenase complex (SDH) or NF1 inactivation, with very rare cases harboring mutant BRAF or RAS alleles. Approximately 5% of GISTs lack any of such mutations and are called quadruple wild-type (WT) GISTs. Recently, deregulated Fibroblast Growth Factor (FGF)/FGF-receptor (FGFR) signaling emerged as a relevant pathway driving oncogenic activity in different molecular subgroups of GISTs. This review summarizes all the current evidences supporting the key role of the FGF/FGFR pathway activation in GISTs, whereby either activating mutations, oncogenic gene fusions, or autocrine/paracrine signaling have been detected in quadruple WT, SDH-deficient, or KIT-mutant GISTs.
Collapse
Affiliation(s)
- Annalisa Astolfi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Abbondanza Pantaleo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Valentina Indio
- “Giorgio Prodi” Cancer Research Center, University of Bologna, 40138 Bologna, Italy;
| | - Milena Urbini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Margherita Nannini
- Medical Oncology Unit, S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| |
Collapse
|
13
|
Feng X, Xu H, Dela Cruz N. Mucosal Schwann Cell Hamartoma in sigmoid colon – A rare case report and review of literature. HUMAN PATHOLOGY: CASE REPORTS 2020. [DOI: 10.1016/j.ehpc.2019.200337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
14
|
Shang L, Fang Z, Liu J, Du F, Jing H, Xu Y, Dong K, Zhang X, Wu H, Jing C, Li L. Case report of ascending colon cancer and multiple jejunal GISTs in a patient with neurofibromatosis type 1 (NF1). BMC Cancer 2019; 19:1196. [PMID: 31805970 PMCID: PMC6896298 DOI: 10.1186/s12885-019-6375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
Background NF1(Neurofibromatosis type 1) is an autosomal dominant genetic disorder. Patients with NF1 have an increased risk of developing benign or malignant tumours, such as gastrointestinal stromal tumours (GISTs). However, the coexistence of NF1, GIST and colon cancer is very rare, and few cases have been reported in the literature. Case presentation We admitted a case of a 64-year-old man with type 1 neurofibromatosis, GISTs, and ascending colon cancer. This case was characterized by café-au-lait macules, discrete cutaneous neurofibromas, nodular neurofibromas, multiple jejunal tumours, and ascending colon cancer. Laparoscopic exploration revealed ascending colon cancer and multiple jejunal tumours. Laparoscopic right hemicolectomy and local excision of the jejunal tumours were performed successfully. The pathological results confirmed moderate differentiated adenocarcinoma of the ascending colon with multiple jejunal GISTs (low risk, very low risk). Moreover, the immunohistochemistry results of multiple jejunal GISTs suggest that NF1 is positive. Whole-exome sequencing (WES) of colon cancer revealed mutations in more than 20 genes, including KRAS, PIK3CA, APC, SMAD4, etc. The results of whole-exome sequencing (WES) of jejunal GISTs revealed an NF1 mutation and no KIT or PDGFR gene mutation. Conclusion We report a rare case of simultaneous NF1, GIST and colon adenocarcinoma. For patients with NF1, benign and/or malignant tumours are often combined. Therefore, these patients should undergo regular physical examinations so that early detection and early treatment can be achieved.
Collapse
Affiliation(s)
- Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhen Fang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Fengying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Haiyan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yali Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Kangdi Dong
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaoman Zhang
- Department of ENT, Shandong Provincial ENT Hospital, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Hao Wu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Changqing Jing
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China. .,Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jingwuweiqi Street, 324, Jinan, 250021, Shandong, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China. .,Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jingwuweiqi Street, 324, Jinan, 250021, Shandong, China.
| |
Collapse
|
15
|
Burns J, Wilding CP, L Jones R, H Huang P. Proteomic research in sarcomas - current status and future opportunities. Semin Cancer Biol 2019; 61:56-70. [PMID: 31722230 PMCID: PMC7083238 DOI: 10.1016/j.semcancer.2019.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Sarcomas are a rare group of mesenchymal cancers comprising over 70 different histological subtypes. For the majority of these diseases, the molecular understanding of the basis of their initiation and progression remains unclear. As such, limited clinical progress in prognosis or therapeutic regimens have been made over the past few decades. Proteomics techniques are being increasingly utilised in the field of sarcoma research. Proteomic research efforts have thus far focused on histological subtype characterisation for the improvement of biological understanding, as well as for the identification of candidate diagnostic, predictive, and prognostic biomarkers for use in clinic. However, the field itself is in its infancy, and none of these proteomic research findings have been translated into the clinic. In this review, we provide a brief overview of the proteomic strategies that have been employed in sarcoma research. We evaluate key proteomic studies concerning several rare and ultra-rare sarcoma subtypes including, gastrointestinal stromal tumours, osteosarcoma, liposarcoma, leiomyosarcoma, malignant rhabdoid tumours, Ewing sarcoma, myxofibrosarcoma, and alveolar soft part sarcoma. Consequently, we illustrate how routine implementation of proteomics within sarcoma research, integration of proteomics with other molecular profiling data, and incorporation of proteomics into clinical trial studies has the potential to propel the biological and clinical understanding of this group of complex rare cancers moving forward.
Collapse
Affiliation(s)
- Jessica Burns
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Christopher P Wilding
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Robin L Jones
- Division of Clinical Studies, The Institute of Cancer Research, London SW3 6JB, UK; Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
16
|
Urbini M, Indio V, Tarantino G, Ravegnini G, Angelini S, Nannini M, Saponara M, Santini D, Ceccarelli C, Fiorentino M, Vincenzi B, Fumagalli E, Casali PG, Grignani G, Pession A, Ardizzoni A, Astolfi A, Pantaleo MA. Gain of FGF4 is a frequent event in KIT/PDGFRA/SDH/RAS-P WT GIST. Genes Chromosomes Cancer 2019; 58:636-642. [PMID: 30887595 PMCID: PMC6619263 DOI: 10.1002/gcc.22753] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
Gastrointestinal stromal tumors (GIST) lacking mutations in KIT/PDGFRA or RAS pathways and retaining an intact SDH complex are usually referred to as KIT/PDGFRA/SDH/RAS‐P WT GIST or more simply quadruple WT GIST (~5% of all GIST). Despite efforts made, no recurrent genetic event in quadruple WT GIST has been identified so far. To further investigate this disease, we performed high throughput copy number analysis on quadruple WT GIST specimens identifying a recurrent focal gain in band 11q13.3 (involving FGF3/FGF4) in 6/8 cases. This event was not found in the other molecular GIST subgroups. FGF3/FGF4 duplication was associated with high expression of FGF4, both at mRNA and protein level, a growth factor normally not expressed in adult tissues or in KIT/PDGFRA‐mutated GIST. FGFR1 was found to be the predominant FGF receptor expressed and phosphorylation of AKT was detected, suggesting that a FGF4‐FGFR1 autocrine loop could stimulate downstream signaling in quadruple WT GIST. Together with the recent reports of quadruple WT cases carrying FGFR1 activating alterations, these findings strengthen the hypothesis of a potential involvement of FGFR pathway deregulation in quadruple WT GIST, which may represent a rationale for novel therapeutic approaches.
Collapse
Affiliation(s)
- Milena Urbini
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Giuseppe Tarantino
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, FaBit; University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, FaBit; University of Bologna, Bologna, Italy
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maristella Saponara
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Donatella Santini
- Pathology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Claudio Ceccarelli
- Pathology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Laboratory of Oncological and Transplant Molecular Pathology-Pathology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, University Campus Bio-Medico, Rome, Italy
| | - Elena Fumagalli
- Medical Oncology Unit 2, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Giovanni Casali
- Medical Oncology Unit 2, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Grignani
- Sarcoma Unit, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Division of Medical Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Annalisa Astolfi
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
|
18
|
Abstract
The role of genetic components in cancer development is an area of interest for cancer biologists in general. Intriguingly, some genes have both oncogenic and tumor-suppressor functions. In this study, we systematically identified these genes through database search and text mining. We find that most of them are transcription factors or kinases and exhibit dual biological functions, e.g., that they both positively and negatively regulate transcription in cells. Some cancer types such as leukemia are over-represented by them, whereas some common cancer types such as lung cancer are under-represented by them. Across 12 major cancer types, while their genomic mutation patterns are similar to that of oncogenes, their expression patterns are more similar to that of tumor-suppressor genes. Their expression profile in six human organs propose that they mainly function as tumor suppressor in normal tissue. Our network analyses further show they have higher network degrees than both oncogenes and tumor-suppressor genes and thus tend to be the hub genes in the protein–protein interaction network. Our mutation, expression spectrum, and network analyses might help explain why some cancer types are specifically associated with them. Finally, our results suggest that the functionally altering mutations in “double-agent” genes and oncogenes are the main driving force in cancer development, because non-silent mutations are biasedly distributed toward these two gene sets across all 12 major cancer types.
Collapse
Affiliation(s)
- Libing Shen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qili Shi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenyuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China. .,Department of Rehabilitation Medicine, Hua Shan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
19
|
Mei L, Smith SC, Faber AC, Trent J, Grossman SR, Stratakis CA, Boikos SA. Gastrointestinal Stromal Tumors: The GIST of Precision Medicine. Trends Cancer 2017; 4:74-91. [PMID: 29413424 DOI: 10.1016/j.trecan.2017.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
The discovery of activated KIT mutations in gastrointestinal (GI) stromal tumors (GISTs) in 1998 triggered a sea change in our understanding of these tumors and has ushered in a new paradigm for the use of molecular genetic diagnostics to guide targeted therapies. KIT and PDGFRA mutations account for 85-90% of GISTs; subsequent genetic studies have led to the identification of mutation/epimutation of additional genes, including the succinate dehydrogenase (SDH) subunit A, B, C, and D genes. This review focuses on integrating findings from clinicopathologic, genetic, and epigenetic studies, which classify GISTs into two distinct clusters: an SDH-competent group and an SDH-deficient group. This development is important since it revolutionizes our current management of affected patients and their relatives, fundamentally, based on the GIST genotype.
Collapse
Affiliation(s)
- Lin Mei
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven C Smith
- Departments of Pathology and Surgery, VCU School of Medicine, Richmond, VA, USA
| | - Anthony C Faber
- VCU Phillips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Steven R Grossman
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Constantine A Stratakis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD, USA
| | - Sosipatros A Boikos
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
20
|
Charville GW, Longacre TA. Surgical Pathology of Gastrointestinal Stromal Tumors: Practical Implications of Morphologic and Molecular Heterogeneity for Precision Medicine. Adv Anat Pathol 2017; 24:336-353. [PMID: 28820749 DOI: 10.1097/pap.0000000000000166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal stromal tumor (GIST), the most common mesenchymal neoplasm of the gastrointestinal tract, exhibits diverse histologic and clinical manifestations. With its putative origin in the gastrointestinal pacemaker cell of Cajal, GIST can arise in association with any portion of the tubular gastrointestinal tract. Morphologically, GISTs are classified as spindled or epithelioid, though each of these subtypes encompasses a broad spectrum of microscopic appearances, many of which mimic other histologic entities. Despite this morphologic ambiguity, the diagnosis of GIST is aided in many cases by immunohistochemical detection of KIT (CD117) or DOG1 expression. The natural history of GIST ranges from that of a tumor cured by surgical resection to that of a locally advanced or even widely metastatic, and ultimately fatal, disease. This clinicopathologic heterogeneity is paralleled by an underlying molecular diversity: the majority of GISTs are associated with spontaneous activating mutations in KIT, PDGFRA, or BRAF, while additional subsets are driven by genetic lesions-often inherited-of NF1 or components of the succinate dehydrogenase enzymatic complex. Specific gene mutations correlate with particular anatomic or morphologic characteristics and, in turn, with distinct clinical behaviors. Therefore, prognostication and treatment are increasingly dictated not only by morphologic clues, but also by accompanying molecular genetic features. In this review, we provide a comprehensive description of the heterogenous molecular underpinnings of GIST, including implications for the practicing pathologist with regard to morphologic identification, immunohistochemical diagnosis, and clinical management.
Collapse
|
21
|
Florou V, Wilky BA, Trent JC. Latest advances in adult gastrointestinal stromal tumors. Future Oncol 2017; 13:2183-2193. [DOI: 10.2217/fon-2017-0245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common GI tract mesenchymal tumors. GIST patients are optimally managed by a precision medicine approach. Herein, we discuss the latest advances in precision medicine and ongoing clinical trials relevant to GIST. Circulating tumor DNA for detection of mutational changes could replace tissue biopsies and radiographic imaging once validated. Most GISTs are KIT/PDGFRα mutated, and despite the good clinical response to imatinib, treatment is generally not curative, more often due to secondary mutations. New mechanisms to bypass this resistance by inhibiting KIT downstream pathways and by targeting multiple KIT or PDGFRα mutations are being investigated. Immunotherapy for GIST patients is in its infancy. These approaches may lead to more effective, less toxic therapies.
Collapse
Affiliation(s)
- Vaia Florou
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Breelyn A Wilky
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jonathan C Trent
- Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
- Sylvester Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
22
|
Abstract
The classification "gastrointestinal stromal tumor" (GIST) became commonplace in the 1990s and since that time various advances have characterized the GIST lineage of origin, tyrosine kinase mutations, and mechanisms of response and resistance to targeted therapies. In addition to tyrosine kinase mutations and their constitutive activation of downstream signaling pathways, GISTs acquire a sequence of chromosomal aberrations. These include deletions of chromosomes 14q, 22q, 1p, and 15q, which harbor putative tumor suppressor genes required for stepwise progression from microscopic, preclinical forms of GIST (microGIST) to clinically relevant tumors with malignant potential. Recent advances extend our understanding of GIST biology beyond that of the oncogenic KIT/PDGFRA tyrosine kinases and beyond mechanisms of KIT/PDGFRA-inhibitor treatment response and resistance. These advances have characterized ETV1 as an essential interstitial cell of Cajal-GIST transcription factor in oncogenic KIT signaling pathways, and have characterized the biologically distinct subgroup of succinate dehydrogenase deficient GIST, which are particularly common in young adults. Also, recent discoveries of MAX and dystrophin genomic inactivation have expanded our understanding of GIST development and progression, showing that MAX inactivation is an early event fostering cell cycle activity, whereas dystrophin inactivation promotes invasion and metastasis.
Collapse
|
23
|
Burgoyne AM, De Siena M, Alkhuziem M, Tang CM, Medina B, Fanta PT, Belinsky MG, von Mehren M, Thorson JA, Madlensky L, Bowler T, D'Angelo F, Stupack DG, Harismendy O, DeMatteo RP, Sicklick JK. Duodenal-Jejunal Flexure GI Stromal Tumor Frequently Heralds Somatic NF1 and Notch Pathway Mutations. JCO Precis Oncol 2017; 2017. [PMID: 29938249 DOI: 10.1200/po.17.00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose GI stromal tumors (GISTs) are commonly associated with somatic mutations in KIT and PDGFRA. However, a subset arises from mutations in NF1, most commonly associated with neurofibromatosis type 1. We define the anatomic distribution of NF1 alterations in GIST. Methods We describe the demographic/clinicopathologic features of 177 patients from two institutions whose GISTs underwent next-generation sequencing of ≥315 cancer-related genes. Results We initially identified six (9.7%) of 62 GISTs with NF1 genomic alterations from the first cohort. Of these six patients, five (83.3%) had unifocal tumors at the duodenal-jejunal flexure (DJF). Two additional patients with DJF GISTs had non-NF1 (KIT and BRAF) genomic alterations. After excluding one DJF GIST with an NF1 single nucleotide polymorphism, four (57.1%) of seven sequenced DJF tumors demonstrated deleterious NF1 alterations, whereas only one (1.8%) of 55 sequenced non-DJF GISTs had a deleterious NF1 somatic mutation (P < .001). One patient with DJF GIST had a germline NF1 variant that was associated with incomplete penetrance of clinical neurofibromatosis type 1 features along with a somatic NF1 mutation. Of the five DJF GISTs with any NF1 alteration, three (60%) had KIT mutations, and three (60%) had Notch pathway mutations (NOTCH2, MAML2, CDC73). We validated these findings in a second cohort of 115 GISTs, where two (40%) of five unifocal NF1-mutated GISTs arose at the DJF, and one of these also had a Notch pathway mutation (EP300). Conclusion Broad genomic profiling of adult GISTs has revealed that NF1 alterations are enriched in DJF GISTs. These tumors also may harbor concurrent activating KIT and/or inactivating Notch pathway mutations. In some cases, germline NF1 genetic testing may be appropriate for patients with DJF GISTs.
Collapse
Affiliation(s)
| | - Martina De Siena
- University of California, San Diego, La Jolla, CA; Sapienza e Università di Roma, Rome, Italy
| | | | | | | | - Paul T Fanta
- University of California, San Diego, La Jolla, CA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Belinsky MG, Cai KQ, Zhou Y, Luo B, Pei J, Rink L, von Mehren M. Succinate dehydrogenase deficiency in a PDGFRA mutated GIST. BMC Cancer 2017; 17:512. [PMID: 28768491 PMCID: PMC5541693 DOI: 10.1186/s12885-017-3499-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Background Most gastrointestinal stromal tumors (GISTs) harbor mutually exclusive gain of function mutations in the receptor tyrosine kinase (RTK) KIT (70–80%) or in the related receptor PDGFRA (~10%). These GISTs generally respond well to therapy with the RTK inhibitor imatinib mesylate (IM), although initial response is genotype-dependent. An alternate mechanism leading to GIST oncogenesis is deficiency in the succinate dehydrogenase (SDH) enzyme complex resulting from genetic or epigenetic inactivation of one of the four SDH subunit genes (SDHA, SDHB, SDHC, SDHD, collectively referred to as SDHX). SDH loss of function is generally seen only in GIST lacking RTK mutations, and SDH-deficient GIST respond poorly to imatinib therapy. Methods Tumor and normal DNA from a GIST case carrying the IM-resistant PDGFRA D842V mutation was analyzed by whole exome sequencing (WES) to identify additional potential targets for therapy. The tumors analyzed were separate recurrences following progression on imatinib, sunitinib, and the experimental PDGFRA inhibitor crenolanib. Tumor sections from the GIST case and a panel of ~75 additional GISTs were subjected to immunohistochemistry (IHC) for the SDHB subunit. Results Surprisingly, a somatic, loss of function mutation in exon 4 of the SDHB subunit gene (c.291_292delCT, p.I97Mfs*21) was identified in both tumors. Sanger sequencing confirmed the presence of this inactivating mutation, and IHC for the SDHB subunit demonstrated that these tumors were SDH-deficient. IHC for the SDHB subunit across a panel of ~75 GIST cases failed to detect SDH deficiency in other GISTs with RTK mutations. Conclusions This is the first reported case of a PDGFRA mutant GIST exhibiting SDH-deficiency. A brief discussion of the relevant GIST literature is included. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3499-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin G Belinsky
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA.
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Biao Luo
- Molecular Diagnostics Laboratory, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jianming Pei
- Genomics Services, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lori Rink
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Margaret von Mehren
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| |
Collapse
|
25
|
Nannini M, Urbini M, Astolfi A, Biasco G, Pantaleo MA. The progressive fragmentation of the KIT/PDGFRA wild-type (WT) gastrointestinal stromal tumors (GIST). J Transl Med 2017; 15:113. [PMID: 28535771 PMCID: PMC5442859 DOI: 10.1186/s12967-017-1212-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Recent advances in molecular biology have revolutionized the concept of KIT/PDGFRA wild type (WT) gastrointestinal stromal tumors (GIST) than the past. Indeed, from being defined as GIST without KIT or PDGFRA mutations, we are now faced with the opposite scenario, where KIT/PDGFRA WT GIST are "positively" defined according to their specific molecular alterations. In particular, if until recently KIT/PDGFRA GIST without abnormalities of KIT, PDGFRA, SDH, and the RAS signaling pathway were referred as quadruple WT GIST, today also this small subset of GIST is emerging out as a group of heterogeneous distinct entities with multiple different molecular alterations. Therefore, given this still growing and rapidly evolving scenario, the progressive molecular fragmentation may inevitably lead over the time to the disappearance of KIT/PDGFRA WT GIST, destined to be singularly defined by their molecular fingerprint.
Collapse
Affiliation(s)
- Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| | - Milena Urbini
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Guido Biasco
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,"Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Maria A Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,"Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Pantaleo MA, Urbini M, Indio V, Ravegnini G, Nannini M, De Luca M, Tarantino G, Angelini S, Gronchi A, Vincenzi B, Grignani G, Colombo C, Fumagalli E, Gatto L, Saponara M, Ianni M, Paterini P, Santini D, Pirini MG, Ceccarelli C, Altimari A, Gruppioni E, Renne SL, Collini P, Stacchiotti S, Brandi G, Casali PG, Pinna AD, Astolfi A, Biasco G. Genome-Wide Analysis Identifies MEN1 and MAX Mutations and a Neuroendocrine-Like Molecular Heterogeneity in Quadruple WT GIST. Mol Cancer Res 2017; 15:553-562. [PMID: 28130400 DOI: 10.1158/1541-7786.mcr-16-0376] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/10/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
Abstract
Quadruple wild-type (WT) gastrointestinal stromal tumor (GIST) is a genomic subgroup lacking KIT/PDGFRA/RAS pathway mutations, with an intact succinate dehydrogenase (SDH) complex. The aim of this work is to perform a wide comprehensive genomic study on quadruple WT GIST to improve the characterization of these patients. We selected 14 clinical cases of quadruple WT GIST, of which nine cases showed sufficient DNA quality for whole exome sequencing (WES). NF1 alterations were identified directly by WES. Gene expression from whole transcriptome sequencing (WTS) and miRNA profiling were performed using fresh-frozen, quadruple WT GIST tissue specimens and compared with SDH and KIT/PDGFRA-mutant GIST. WES identified an average of 18 somatic mutations per sample. The most relevant somatic oncogenic mutations identified were in TP53, MEN1, MAX, FGF1R, CHD4, and CTDNN2. No somatic alterations in NF1 were identified in the analyzed cohort. A total of 247 mRNA transcripts and 66 miRNAs were differentially expressed specifically in quadruple WT GIST. Overexpression of specific molecular markers (COL22A1 and CALCRL) and genes involved in neural and neuroendocrine lineage (ASCL1, Family B GPCRs) were detected and further supported by predicted miRNA target analysis. Quadruple WT GIST show a specific genetic signature that deviates significantly from that of KIT/PDGFRA-mutant and SDH-mutant GIST. Mutations in MEN1 and MAX genes, a neural-committed phenotype and upregulation of the master neuroendocrine regulator ASCL1, support a genetic similarity with neuroendocrine tumors, with whom they also share the great variability in oncogenic driver genes.Implications: This study provides novel insights into the biology of quadruple WT GIST that potentially resembles neuroendocrine tumors and should promote the development of specific therapeutic approaches. Mol Cancer Res; 15(5); 553-62. ©2017 AACR.
Collapse
Affiliation(s)
- Maria A Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Milena Urbini
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, FaBit; University of Bologna, Bologna Italy
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Matilde De Luca
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Giuseppe Tarantino
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, FaBit; University of Bologna, Bologna Italy
| | | | - Bruno Vincenzi
- Medical Oncology, University Campus Bio-Medico, Rome, Italy
| | | | - Chiara Colombo
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Fumagalli
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lidia Gatto
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maristella Saponara
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Manuela Ianni
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Paola Paterini
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | | | - M Giulia Pirini
- Pathology Service, Addarii Institute of Oncology, Bologna, Italy
| | - Claudio Ceccarelli
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Elisa Gruppioni
- Pathology Service, Addarii Institute of Oncology, Bologna, Italy
| | | | - Paola Collini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Paolo G Casali
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonio D Pinna
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Guido Biasco
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Schaefer IM, Wang Y, Liang CW, Bahri N, Quattrone A, Doyle L, Mariño-Enríquez A, Lauria A, Zhu M, Debiec-Rychter M, Grunewald S, Hechtman JF, Dufresne A, Antonescu CR, Beadling C, Sicinska ET, van de Rijn M, Demetri GD, Ladanyi M, Corless CL, Heinrich MC, Raut CP, Bauer S, Fletcher JA. MAX inactivation is an early event in GIST development that regulates p16 and cell proliferation. Nat Commun 2017; 8:14674. [PMID: 28270683 PMCID: PMC5344969 DOI: 10.1038/ncomms14674] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
KIT, PDGFRA, NF1 and SDH mutations are alternate initiating events, fostering hyperplasia in gastrointestinal stromal tumours (GISTs), and additional genetic alterations are required for progression to malignancy. The most frequent secondary alteration, demonstrated in ∼70% of GISTs, is chromosome 14q deletion. Here we report hemizygous or homozygous inactivating mutations of the chromosome 14q MAX gene in 16 of 76 GISTs (21%). We find MAX mutations in 17% and 50% of sporadic and NF1-syndromic GISTs, respectively, and we find loss of MAX protein expression in 48% and 90% of sporadic and NF1-syndromic GISTs, respectively, and in three of eight micro-GISTs, which are early GISTs. MAX genomic inactivation is associated with p16 silencing in the absence of p16 coding sequence deletion and MAX induction restores p16 expression and inhibits GIST proliferation. Hence, MAX inactivation is a common event in GIST progression, fostering cell cycle activity in early GISTs. In gastrointestinal stromal tumours early mutations in known genes are frequently followed by chromosome 14q deletion. Here the authors find mutations resulting in loss of MAX protein expression conserved between primary tumours and metastases in the same patients, suggesting that MAX mutation is an early event.
Collapse
Affiliation(s)
- Inga-Marie Schaefer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Yuexiang Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Cher-Wei Liang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Nacef Bahri
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Anna Quattrone
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA.,Department of Human Genetics, KU Leuven and University Hospitals Leuven, Herestraat 49, Box 602, B-3000 Leuven, Belgium
| | - Leona Doyle
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Adrian Mariño-Enríquez
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Alexandra Lauria
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Meijun Zhu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Herestraat 49, Box 602, B-3000 Leuven, Belgium
| | - Susanne Grunewald
- Sarcoma Center, Western German Cancer Center, University of Duisburg-Essen Medical School, Hufelandstrasse 55, 45122 Essen, Germany
| | - Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Armelle Dufresne
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Carol Beadling
- Department of Pathology, Knight Cancer Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - Ewa T Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Matt van de Rijn
- Department of Pathology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, California 94305, USA
| | - George D Demetri
- Ludwig Center at Harvard, Harvard Medical School and Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Christopher L Corless
- Department of Pathology, Knight Cancer Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - Michael C Heinrich
- Portland VA Health Care System, Knight Cancer Institute, Oregon Health and Science University, 3181 Soutwest Sam Jackson Park Road, Portland, Oregon 97239-3098, USA
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Sebastian Bauer
- Sarcoma Center, Western German Cancer Center, University of Duisburg-Essen Medical School, Hufelandstrasse 55, 45122 Essen, Germany
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 528, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Gasparotto D, Rossi S, Polano M, Tamborini E, Lorenzetto E, Sbaraglia M, Mondello A, Massani M, Lamon S, Bracci R, Mandolesi A, Frate E, Stanzial F, Agaj J, Mazzoleni G, Pilotti S, Gronchi A, Dei Tos AP, Maestro R. Quadruple-Negative GIST Is a Sentinel for Unrecognized Neurofibromatosis Type 1 Syndrome. Clin Cancer Res 2016; 23:273-282. [PMID: 27390349 DOI: 10.1158/1078-0432.ccr-16-0152] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE The majority of gastrointestinal stromal tumors (GIST) are driven by KIT, PDGFRA, or, less commonly, BRAF mutations, and SDH gene inactivation is involved in a limited fraction of gastric lesions. However, about 10% of GISTs are devoid of any of such alterations and are poorly responsive to standard treatments. This study aims to shed light on the molecular drivers of quadruple-negative GISTs. EXPERIMENTAL DESIGN Twenty-two sporadic quadruple-negative GISTs with no prior association with Neurofibromatosis Type 1 syndrome were molecularly profiled for a panel of genes belonging to tyrosine kinase pathways or previously implicated in GISTs. For comparison purposes, 24 GISTs carrying KIT, PDGFRA, or SDH gene mutations were also analyzed. Molecular findings were correlated to clinicopathologic features. RESULTS Most quadruple-negative GISTs featured intestinal localization, with a female predilection. About 60% (13/22) of quadruple-negative tumors carried NF1 pathogenic mutations, often associated with biallelic inactivation. The analysis of normal tissues, available in 11 cases, indicated the constitutional nature of the NF1 mutation in 7 of 11 cases, unveiling an unrecognized Neurofibromatosis Type 1 syndromic condition. Multifocality and a multinodular pattern of growth were common findings in NF1-mutated quadruple-negative GISTs. CONCLUSIONS NF1 gene mutations are frequent in quadruple-negative GISTs and are often constitutional, indicating that a significant fraction of patients with apparently sporadic quadruple-negative GISTs are affected by unrecognized Neurofibromatosis Type 1 syndrome. Hence, a diagnosis of quadruple-negative GIST, especially if multifocal or with a multinodular growth pattern and a nongastric location, should alert the clinician to a possible Neurofibromatosis Type 1 syndromic condition. Clin Cancer Res; 23(1); 273-82. ©2016 AACR.
Collapse
Affiliation(s)
- Daniela Gasparotto
- Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Sabrina Rossi
- Department of Pathology and Molecular Genetics, Treviso General Hospital, Treviso, Italy
| | - Maurizio Polano
- Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Elena Tamborini
- Department of Pathology and Molecular Biology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Erica Lorenzetto
- Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Marta Sbaraglia
- Department of Pathology and Molecular Genetics, Treviso General Hospital, Treviso, Italy
| | - Alessia Mondello
- Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano, Italy
| | - Marco Massani
- Department of Surgery, Treviso General Hospital, Treviso, Italy
| | - Stefano Lamon
- Department of Oncology, Treviso General Hospital, Treviso, Italy
| | - Raffaella Bracci
- Department of Internal Medicine, Ospedali Riuniti di Ancona, Ancona, Italy
| | | | | | - Franco Stanzial
- Clinical Genetics Service, Bolzano General Hospital, Bolzano/Bozen, Italy
| | - Jerin Agaj
- Department of Surgery, Vipiteno General Hospital, Vipiteno/Sterzing, Italy
| | - Guido Mazzoleni
- Department of Pathology, Bolzano General Hospital, Bolzano/Bozen, Italy
| | - Silvana Pilotti
- Department of Pathology and Molecular Biology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology and Molecular Genetics, Treviso General Hospital, Treviso, Italy
| | - Roberta Maestro
- Experimental Oncology 1, CRO Aviano National Cancer Institute, Aviano, Italy.
| |
Collapse
|
29
|
Pantaleo MA, Nannini M. Long-term outcome of molecular subgroups of gastrointestinal stromal tumour patients treated with standard-dose imatinib in the BFR14 trial: The wild-type gastrointestinal stromal tumours are not a single group yet. Eur J Cancer 2016; 58:38-40. [PMID: 26933960 DOI: 10.1016/j.ejca.2016.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Maria A Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti, 9, 40138, Bologna, Italy; "Giorgio Prodi" Cancer Research Center, University of Bologna, Via Massarenti, 11, 40138, Bologna, Italy.
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti, 9, 40138, Bologna, Italy.
| |
Collapse
|