1
|
Boucher L, Rozalska L, Sorel N, Olivier G, Hernanz MPG, Cayssials E, Raimbault A, Chomel JC. Emergence of secondary fusions in chronic myeloid leukemia as a driver of tyrosine kinase inhibitor resistance and blast crisis transformation. Leuk Res 2024; 137:107439. [PMID: 38281466 DOI: 10.1016/j.leukres.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Lara Boucher
- CHU de Poitiers, Service de Cancérologie Biologique, F-86000 Poitiers, France
| | - Laura Rozalska
- CHU de Poitiers, Service d'Hématologie Biologique, F-86000 Poitiers, France
| | - Nathalie Sorel
- CHU de Poitiers, Service de Cancérologie Biologique, F-86000 Poitiers, France; Fédération Hospitalo-Universitaire (FHU) GOAL, 'Grand Ouest Against Leukemia', France
| | - Gaëlle Olivier
- CH de Niort, Service d'Hématologie, F-79000 Niort, France
| | - Maria Pilar Gallego Hernanz
- CHU de Poitiers, Service d'Oncologie Hématologique et Thérapie Cellulaire, F-86000 Poitiers, France; INSERM, CIC-P 1402, F-86000 Poitiers, France; Fédération Hospitalo-Universitaire (FHU) GOAL, 'Grand Ouest Against Leukemia', France
| | - Emilie Cayssials
- CHU de Poitiers, Service d'Oncologie Hématologique et Thérapie Cellulaire, F-86000 Poitiers, France; INSERM, CIC-P 1402, F-86000 Poitiers, France; Fédération Hospitalo-Universitaire (FHU) GOAL, 'Grand Ouest Against Leukemia', France
| | - Anna Raimbault
- CHU de Poitiers, Service de Cancérologie Biologique, F-86000 Poitiers, France; CHU de Poitiers, Service d'Hématologie Biologique, F-86000 Poitiers, France; Fédération Hospitalo-Universitaire (FHU) GOAL, 'Grand Ouest Against Leukemia', France
| | - Jean-Claude Chomel
- CHU de Poitiers, Service de Cancérologie Biologique, F-86000 Poitiers, France; Fédération Hospitalo-Universitaire (FHU) GOAL, 'Grand Ouest Against Leukemia', France.
| |
Collapse
|
2
|
Gayatri MB, Kancha RK, Behera A, Patchva D, Velugonda N, Gundeti S, Reddy ABM. AMPK-induced novel phosphorylation of RUNX1 inhibits STAT3 activation and overcome imatinib resistance in chronic myelogenous leukemia (CML) subjects. Cell Death Discov 2023; 9:401. [PMID: 37903788 PMCID: PMC10616083 DOI: 10.1038/s41420-023-01700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Imatinib resistance remains an unresolved problem in CML disease. Activation of JAK2/STAT3 pathway and increased expression of RUNX1 have become one reason for development of imatinib resistance in CML subjects. Metformin has gained attention as an antileukemic drug in recent times. However, the molecular mechanism remains elusive. The present study shows that RUNX1 is a novel substrate of AMP-activated kinase (AMPK), where AMPK phosphorylates RUNX1 at Ser 94 position. Activation of AMPK by metformin could lead to increased cytoplasmic retention of RUNX1 due to Ser 94 phosphorylation. RUNX1 Ser 94 phosphorylation resulted in increased interaction with STAT3, which was reflected in reduced transcriptional activity of both RUNX1 and STAT3 due to their cytoplasmic retention. The reduced transcriptional activity of STAT3 and RUNX1 resulted in the down-regulation of their signaling targets involved in proliferation and anti-apoptosis. Our cell proliferation assays using in vitro resistant cell line models and PBMCs isolated from CML clinical patients and normal subjects demonstrate that metformin treatment resulted in reduced growth and improved imatinib sensitivity of resistant subjects.
Collapse
Affiliation(s)
- Meher Bolisetti Gayatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, 500007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dorababu Patchva
- Department of Pharmacology, Apollo Institute of Medical Sciences and Research, Jubilee Hills, Hyderabad, 500033, India
| | - Nagaraj Velugonda
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | - Sadasivudu Gundeti
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | | |
Collapse
|
3
|
Krishnan V. The RUNX Family of Proteins, DNA Repair, and Cancer. Cells 2023; 12:cells12081106. [PMID: 37190015 DOI: 10.3390/cells12081106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX family of transcription factors, including RUNX1, RUNX2, and RUNX3, are key regulators of development and can function as either tumor suppressors or oncogenes in cancer. Emerging evidence suggests that the dysregulation of RUNX genes can promote genomic instability in both leukemia and solid cancers by impairing DNA repair mechanisms. RUNX proteins control the cellular response to DNA damage by regulating the p53, Fanconi anemia, and oxidative stress repair pathways through transcriptional or non-transcriptional mechanisms. This review highlights the importance of RUNX-dependent DNA repair regulation in human cancers.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
4
|
Zeng X, Wang YP, Man CH. Metabolism in Hematopoiesis and Its Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:45-64. [PMID: 38228958 DOI: 10.1007/978-981-99-7471-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC. Upon malignant transformation, oncogenic drivers in malignant hematopoietic cells can remodel the metabolic pathways for supporting the oncogenic growth. The dysregulation of metabolism results in oncogene addiction, implying the development of malignancy-specific metabolism-targeted therapy. In this chapter, we will discuss the significance of different metabolic pathways in hematopoiesis, specifically, the distinctive metabolic dependency in hematopoietic malignancies and potential metabolic therapy.
Collapse
Affiliation(s)
- Xiaoyuan Zeng
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Kawasaki T, Shimizu Y. Carcinogenesis Models Using Small Fish. Chem Pharm Bull (Tokyo) 2021; 69:962-969. [PMID: 34602577 DOI: 10.1248/cpb.c21-00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental animals are indispensable in life science-related research, including cancer studies. After rats and mice, small fishes, such as zebrafish and medaka, are the second most frequently used model species. Fish models have some advantageous physical characteristics that make them suitable for research, including their small size, some transparency, genetic manipulability, ease of handling, and highly ortholog correspondence with humans. This review introduces technological advances in carcinogenesis model production using small fish. Carcinogenesis model production begins with chemical carcinogenesis, followed by mutagenesis. Gene transfer technology has made it possible to incorporate various mechanisms that act on cancer-related genes in individuals. For example, scientists may now spatiotemporally control gene expression in a single fish through methods including the localization of an expression site via a tissue-specific promoter and expression control using light, heat, or a chemical substance. In addition, genome editing technology is realizing more specific and more efficient gene disruption than conventional mutagenesis, in which the disruption of the gene of interest depends on chance. These technological advances have improved animal models and will soon create carcinogenesis models that better mimic human pathology. We conclude by discussing future expectations for cancer research using small fish.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yuki Shimizu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
6
|
Raby L, Völkel P, Le Bourhis X, Angrand PO. Genetic Engineering of Zebrafish in Cancer Research. Cancers (Basel) 2020; 12:E2168. [PMID: 32759814 PMCID: PMC7464884 DOI: 10.3390/cancers12082168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Zebrafish (Danio rerio) is an excellent model to study a wide diversity of human cancers. In this review, we provide an overview of the genetic and reverse genetic toolbox allowing the generation of zebrafish lines that develop tumors. The large spectrum of genetic tools enables the engineering of zebrafish lines harboring precise genetic alterations found in human patients, the generation of zebrafish carrying somatic or germline inheritable mutations or zebrafish showing conditional expression of the oncogenic mutations. Comparative transcriptomics demonstrate that many of the zebrafish tumors share molecular signatures similar to those found in human cancers. Thus, zebrafish cancer models provide a unique in vivo platform to investigate cancer initiation and progression at the molecular and cellular levels, to identify novel genes involved in tumorigenesis as well as to contemplate new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Pierre-Olivier Angrand
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (L.R.); (P.V.); (X.L.B.)
| |
Collapse
|
7
|
Mechanisms of Disease Progression and Resistance to Tyrosine Kinase Inhibitor Therapy in Chronic Myeloid Leukemia: An Update. Int J Mol Sci 2019; 20:ijms20246141. [PMID: 31817512 PMCID: PMC6940932 DOI: 10.3390/ijms20246141] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the presence of the BCR-ABL1 fusion gene, which encodes a constitutive active tyrosine kinase considered to be the pathogenic driver capable of initiating and maintaining the disease. Despite the remarkable efficacy of tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1, some patients may not respond (primary resistance) or may relapse after an initial response (secondary resistance). In a small proportion of cases, development of resistance is accompanied or shortly followed by progression from chronic to blastic phase (BP), characterized by a dismal prognosis. Evolution from CP into BP is a multifactorial and probably multistep phenomenon. Increase in BCR-ABL1 transcript levels is thought to promote the onset of secondary chromosomal or genetic defects, induce differentiation arrest, perturb RNA transcription, editing and translation that together with epigenetic and metabolic changes may ultimately lead to the expansion of highly proliferating, differentiation-arrested malignant cells. A multitude of studies over the past two decades have investigated the mechanisms underlying the closely intertwined phenomena of drug resistance and disease progression. Here, we provide an update on what is currently known on the mechanisms underlying progression and present the latest acquisitions on BCR-ABL1-independent resistance and leukemia stem cell persistence.
Collapse
|
8
|
Li Y, Liu Q, Wang Z, Qin YZ, Dang H, Shi Y, He Q, Jiang Q, Jiang H, Lai YY. [Clinical analysis of myeloid neoplasms with t (3;21) (q26;q22)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:195-199. [PMID: 30929385 PMCID: PMC7342542 DOI: 10.3760/cma.j.issn.0253-2727.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
目的 探讨伴有t(3;21)(q26;q22)髓系肿瘤的临床特征。 方法 回顾性分析2011年1月至2018年3月北京大学人民医院收治的19例伴有t(3;21)(q26;q22)血液恶性肿瘤患者的临床资料,并汇总文献报道的有详细生存资料的48例患者,采用Kaplan-Meier法进行生存分析。 结果 19例患者中男15例,女4例,中位年龄36(22~68)岁,包括原发急性髓系白血病(AML)4例,骨髓增生异常综合征(MDS)4例,MDS转化的AML3例,慢性髓性白血病(CML)急变8例。19例患者染色体核型均可见t(3;21)(q26;q22),其中13例伴有附加异常。19例中9例进行AML1-MDS1融合基因检测均阳性。9例患者有随访资料,6例接受化疗的患者中4例无效,2例获得完全缓解。随访期内除1例MDS患者因随访期短(6个月)仍存活,其余8例均死亡,中位生存时间为6(4.5~22)个月。汇总文献生存分析结果显示伴有t(3;21)(q26;q22)的髓系肿瘤患者整体预后差,中位生存时间为7个月,尤以AML/治疗相关的AML预后最差,移植和非移植组中位生存时间分别为20.9和4.7个月,差异有统计学意义(P<0.001)。 结论 t(3;21)(q26;q22)是罕见的重现性染色体异常,主要见于髓系血液肿瘤,临床预后差,建议尽早进行造血干细胞移植。
Collapse
Affiliation(s)
- Y Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lang W, Zhu J, Chen F, Cai J, Zhong J. EVI-1 modulates arsenic trioxide induced apoptosis through JNK signalling pathway in leukemia cells. Exp Cell Res 2018; 374:140-151. [PMID: 30472098 DOI: 10.1016/j.yexcr.2018.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022]
Abstract
High expression of the oncogene ecotropic viral integration site-1 (EVI-1) is an independent negative prognostic indicator of survival in leukemia patients. This study aimed to examine the effects of arsenic trioxide (ATO) on EVI-1 in acute myeloid leukemia (AML). Mononuclear cells were isolated from the bone marrow and peripheral blood of AML patients and healthy donors. EVI-1 expression in hematopoietic cells was evaluated by RT-qPCR and Western blot analysis. EVI-1 was highly expressed in both primary AML and leukemia cell lines (THP-1 and K562). ATO down-regulated EVI-1 mRNA in zebrafish in vivo as well as in primary leukemia cells and THP-1 and K562 cells in vitro. Additionally, ATO treatment induced apoptosis, down-regulated both EVI-1 mRNA and oncoprotein expression, increased the expression of pro-apoptosis proteins, and decreased the expression of anti-apoptotic proteins in leukemia cells in vitro. EVI-1 expression in leukemia cells (THP-1 and K562) transduced with EVI-1 siRNA was significantly reduced. Silencing EVI-1 had a significant effect on the activation of the JNK pathway and the induction of leukemia cell apoptosis. ATO may downregulate EVI-1 mRNA and oncoprotein levels and block the inhibitory effects of EVI-1 on the JNK pathway, which activates the JNK apoptotic pathway, thereby leading to the apoptosis of EVI-1 in AML patients.
Collapse
Affiliation(s)
- Wenjing Lang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Jianyi Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Fangyuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China.
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Jihua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| |
Collapse
|
10
|
The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun 2017; 8:1557. [PMID: 29146900 PMCID: PMC5691144 DOI: 10.1038/s41467-017-01590-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/29/2017] [Indexed: 01/19/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are uncommon in children and have a poor prognosis. In contrast to adult MDS, little is known about the genomic landscape of pediatric MDS. Here, we describe the somatic and germline changes of pediatric MDS using whole exome sequencing, targeted amplicon sequencing, and/or RNA-sequencing of 46 pediatric primary MDS patients. Our data show that, in contrast to adult MDS, Ras/MAPK pathway mutations are common in pediatric MDS (45% of primary cohort), while mutations in RNA splicing genes are rare (2% of primary cohort). Surprisingly, germline variants in SAMD9 or SAMD9L were present in 17% of primary MDS patients, and these variants were routinely lost in the tumor cells by chromosomal deletions (e.g., monosomy 7) or copy number neutral loss of heterozygosity (CN-LOH). Our data confirm that adult and pediatric MDS are separate diseases with disparate mechanisms, and that SAMD9/SAMD9L mutations represent a new class of MDS predisposition. Myelodysplastic syndromes (MDS) are uncommon in children and have poor prognosis. Here, the authors interrogate the genomic landscape of MDS, confirming adult and paediatric MDS are separate diseases with disparate mechanisms, and highlighting that SAMD9/SAMD9L mutations represent a new class of MDS predisposition.
Collapse
|
11
|
Ling YZ, Li XH, Yu L, Zhang Y, Liang QS, Yang XD, Wang HT. Protective effects of parecoxib on rat primary astrocytes from oxidative stress induced by hydrogen peroxide. J Zhejiang Univ Sci B 2017; 17:692-702. [PMID: 27604861 DOI: 10.1631/jzus.b1600017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the protective effects of parecoxib from oxidative stress induced by hydrogen peroxide (H2O2) in rat astrocytes in vitro. METHODS All experiments included 4 groups: (1) negative control (NC) group, without any treatment; (2) H2O2 treatment group, 100 μmol/L H2O2 treatment for 24 h; (3) and (4) parecoxib pretreatment groups, 80 and 160 μmol/L parecoxib treatment for 24 h, respectively, and then treated with 100 μmol/L H2O2. Several indices were investigated, and the expressions of Bax, Bcl-2, and brain-derived neurotrophic factor (BDNF) were quantified. RESULTS Compared to the NC group, exposure to H2O2 resulted in significant morphological changes, which could be reversed by pretreatment of parecoxib. In addition, H2O2 treatment led to loss of viability (P=0.026) and increased intracellular reactive oxygen species (ROS) levels (P<0.001), and induced apoptosis (P<0.01) in the primary astrocytes relative to the NC group. However, in the parecoxib pretreatment groups, all the above changes reversed significantly (P<0.05) as compared to the H2O2 treatment group, and were nearly unchanged when compared to the NC group. Mechanical investigation showed that dysregulated Bax, Bcl-2, and BDNF could be implicated in these changes. CONCLUSIONS Our results indicated that parecoxib provided a protective effect from oxidative stress induced by exposure to H2O2.
Collapse
Affiliation(s)
- Yun-Zhi Ling
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Xiao-Hong Li
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Li Yu
- Department of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Ye Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Qi-Sheng Liang
- Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Xiao-di Yang
- Department of Parasitology, Bengbu Medical College, Bengbu 233030, China
| | - Hong-Tao Wang
- Department of Immunology, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|