1
|
Yogi A, Banderali U, Moreno MJ, Martina M. Preclinical Animal Models to Investigate the Role of Na v1.7 Ion Channels in Pain. Life (Basel) 2025; 15:640. [PMID: 40283194 PMCID: PMC12028925 DOI: 10.3390/life15040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic pain is a maladaptive neurological disease that remains a major global healthcare problem. Voltage-gated sodium channels (Navs) are major drivers of the excitability of sensory neurons, and the Nav subtype 1.7 (Nav1.7) has been shown to be critical for the transmission of pain-related signaling. This is highlighted by demonstrations that gain-of-function mutations in the Nav1.7 gene SCN9A result in various pain pathologies, whereas loss-of-function mutations cause complete insensitivity to pain. A substantial body of evidence demonstrates that chronic neuropathy and inflammation result in an upregulation of Nav1.7, suggesting that this channel contributes to pain transmission and sensation. As such, Nav1.7 is an attractive human-validated target for the treatment of pain. Nonetheless, a lack of subtype selectivity, insufficient efficacy, and adverse reactions are some of the issues that have hindered Nav1.7-targeted drug development. This review summarizes the pain behavior profiles mediated by Nav1.7 reported in multiple preclinical models, outlining the current knowledge of the biophysical, physiological, and distribution properties required for a Nav1.7 inhibitor to produce analgesia.
Collapse
Affiliation(s)
- Alvaro Yogi
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (U.B.); (M.J.M.); (M.M.)
| | | | | | | |
Collapse
|
2
|
Di Meglio A, Vaz-Luis I. Systemic inflammation and cancer-related frailty: shifting the paradigm toward precision survivorship medicine. ESMO Open 2024; 9:102205. [PMID: 38194879 PMCID: PMC10820355 DOI: 10.1016/j.esmoop.2023.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- A Di Meglio
- Cancer Survivorship Group, INSERM U981, Gustave Roussy, Villejuif.
| | - I Vaz-Luis
- Cancer Survivorship Group, INSERM U981, Gustave Roussy, Villejuif; Interdisciplinary Department for the Organization of Patient Pathways (DIOPP), Gustave Roussy, Villejuif, France
| |
Collapse
|
3
|
Rodwin RL, Siddiq NZ, Ehrlich BE, Lustberg MB. Biomarkers of Chemotherapy-Induced Peripheral Neuropathy: Current Status and Future Directions. FRONTIERS IN PAIN RESEARCH 2022; 3:864910. [PMID: 35360655 PMCID: PMC8963873 DOI: 10.3389/fpain.2022.864910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023] Open
Abstract
Chemotherapy induced peripheral neuropathy (CIPN) is an often severe and debilitating complication of multiple chemotherapeutic agents that can affect patients of all ages, across cancer diagnoses. CIPN can persist post-therapy, and significantly impact the health and quality of life of cancer survivors. Identifying patients at risk for CIPN is challenging due to the lack of standardized objective measures to assess for CIPN. Furthermore, there are no approved preventative treatments for CIPN, and therapeutic options for CIPN remain limited once it develops. Biomarkers of CIPN have been studied but are not widely used in clinical practice. They can serve as an important clinical tool to identify individuals at risk for CIPN and to better understand the pathogenesis and avenues for treatment of CIPN. Here we review promising biomarkers of CIPN in humans and their clinical implications.
Collapse
Affiliation(s)
- Rozalyn L. Rodwin
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Namrah Z. Siddiq
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Barbara E. Ehrlich
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, New Haven, CT, United States
| | - Maryam B. Lustberg
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, New Haven, CT, United States
- *Correspondence: Maryam B. Lustberg
| |
Collapse
|
4
|
Pozzi E, Alberti P. Management of Side Effects in the Personalized Medicine Era: Chemotherapy-Induced Peripheral Neurotoxicity. Methods Mol Biol 2022; 2547:95-140. [PMID: 36068462 DOI: 10.1007/978-1-0716-2573-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pharmacogenomics is a powerful tool to predict individual response to treatment, in order to personalize therapy, and it has been explored extensively in oncology practice. Not only efficacy on the malignant disease has been investigated but also the possibility to predict adverse effects due to drug administration. Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of those. This potentially severe and long-lasting/permanent side effect of commonly administered anticancer drugs can severely impair quality of life (QoL) in a large cohort of long survival patients. So far, a pharmacogenomics-based approach in CIPN regard has been quite delusive, making a methodological improvement warranted in this field of interest: even the most refined genetic analysis cannot be effective if not applied correctly. Here we try to devise why it is so, suggesting how THE "bench-side" (pharmacogenomics) might benefit from and should cooperate with THE "bed-side" (clinimetrics), in order to make genetic profiling effective if applied to CIPN.
Collapse
Affiliation(s)
- Eleonora Pozzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- NeuroMI (Milan Center for Neuroscience), Milan, Italy.
| |
Collapse
|
5
|
Voltage-Gated Sodium Channels as Potential Biomarkers and Therapeutic Targets for Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13215437. [PMID: 34771603 PMCID: PMC8582439 DOI: 10.3390/cancers13215437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Voltage-gated sodium channels are membrane proteins that change conformation in response to depolarization of the membrane potential, allowing sodium ions to flow into cells. While voltage-gated sodium channels are normally studied in terms of neuron impulses and skeletal or cardiac muscle contraction, abnormal ion channel expression is a feature of many cancer cells. The aim of our study was to assess the expression of voltage-gated sodium channels in ovarian cancer cells. We found that ovarian cancer cells generally express lower levels of voltage-gated sodium channels than normal cells and that two voltage-gated sodium channels, SCN8A and SCN1B, were prognostic biomarkers for ovarian cancer overall survival. In vitro studies suggested that drugs that block voltage-gated sodium channels, such as certain anti-epileptic drugs and local anesthetics, might sensitize ovarian cancer cells to chemotherapy. These findings suggest that voltage-gated sodium channels may be interesting targets for ovarian cancer therapy. Abstract Abnormal ion channel expression distinguishes several types of carcinoma. Here, we explore the relationship between voltage-gated sodium channels (VGSC) and epithelial ovarian cancer (EOC). We find that EOC cell lines express most VGSC, but at lower levels than fallopian tube secretory epithelial cells (the cells of origin for most EOC) or control fibroblasts. Among patient tumor samples, lower SCN8A expression was associated with improved overall survival (OS) (median 111 vs. 52 months; HR 2.04 95% CI: 1.21–3.44; p = 0.007), while lower SCN1B expression was associated with poorer OS (median 45 vs. 56 months; HR 0.69 95% CI 0.54–0.87; p = 0.002). VGSC blockade using either anti-epileptic drugs or local anesthetics (LA) decreased the proliferation of cancer cells. LA increased cell line sensitivity to platinum and taxane chemotherapies. While lidocaine had similar additive effects with chemotherapy among EOC cells and fibroblasts, bupivacaine showed a more pronounced impact on EOC than fibroblasts when combined with either carboplatin (ΔAUC −37% vs. −16%, p = 0.003) or paclitaxel (ΔAUC −37% vs. −22%, p = 0.02). Together, these data suggest VGSC are prognostic biomarkers in EOC and may inform new targets for therapy.
Collapse
|
6
|
Yang Y, Zhao B, Gao X, Sun J, Ye J, Li J, Cao P. Targeting strategies for oxaliplatin-induced peripheral neuropathy: clinical syndrome, molecular basis, and drug development. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:331. [PMID: 34686205 PMCID: PMC8532307 DOI: 10.1186/s13046-021-02141-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022]
Abstract
Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a severe clinical problem and potentially permanent side effect of cancer treatment. For the management of OIPN, accurate diagnosis and understanding of significant risk factors including genetic vulnerability are essential to improve knowledge regarding the prevalence and incidence of OIPN as well as enhance strategies for the prevention and treatment of OIPN. The molecular mechanisms underlying OIPN are complex, with multi-targets and various cells causing neuropathy. Furthermore, mechanisms of OIPN can reinforce each other, and combination therapies may be required for effective management. However, despite intense investigation in preclinical and clinical studies, no preventive therapies have shown significant clinical efficacy, and the established treatment for painful OIPN is limited. Duloxetine is the only agent currently recommended by the American Society of Clinical Oncology. The present article summarizes the most recent advances in the field of studies on OIPN, the overview of the clinical syndrome, molecular basis, therapy development, and outlook of future drug candidates. Importantly, closer links between clinical pain management teams and oncology will advance the effectiveness of OIPN treatment, and the continued close collaboration between preclinical and clinical research will facilitate the development of novel prevention and treatments for OIPN.
Collapse
Affiliation(s)
- Yang Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China. .,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Yangtze River Pharmaceutical Group, Taizhou, 225321, China.
| | - Bing Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuejiao Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinbing Sun
- Changshu No.1 People's Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100#, Hongshan Road, Nanjing, 210028, Jiangsu, China. .,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
7
|
Predictive Biomarkers of Oxaliplatin-Induced Peripheral Neurotoxicity. J Pers Med 2021; 11:jpm11070669. [PMID: 34357136 PMCID: PMC8306803 DOI: 10.3390/jpm11070669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Oxaliplatin (OXA) is a platinum compound primarily used in the treatment of gastrointestinal cancer. OXA-induced peripheral neurotoxicity (OXAIPN) is the major non-hematological dose-limiting toxicity of OXA-based chemotherapy and includes acute transient neurotoxic effects that appear soon after OXA infusion, and chronic non-length dependent sensory neuronopathy symmetrically affecting both upper and lower limbs in a stocking-and-glove distribution. No effective strategy has been established to reverse or treat OXAIPN. Thus, it is necessary to early predict the occurrence of OXAIPN during treatment and possibly modify the OXA-based regimen in patients at high risk as an early diagnosis and intervention may slow down neuropathy progression. However, identifying which patients are more likely to develop OXAIPN is clinically challenging. Several objective and measurable early biomarkers for OXAIPN prediction have been described in recent years, becoming useful for informing clinical decisions about treatment. The purpose of this review is to critically review data on currently available or promising predictors of OXAIPN. Neurological monitoring, according to predictive factors for increased risk of OXAIPN, would allow clinicians to personalize treatment, by monitoring at-risk patients more closely and guide clinicians towards better counseling of patients about neurotoxicity effects of OXA.
Collapse
|
8
|
Kringel D, Malkusch S, Kalso E, Lötsch J. Computational Functional Genomics-Based AmpliSeq™ Panel for Next-Generation Sequencing of Key Genes of Pain. Int J Mol Sci 2021; 22:ijms22020878. [PMID: 33467215 PMCID: PMC7830224 DOI: 10.3390/ijms22020878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
The genetic background of pain is becoming increasingly well understood, which opens up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies adapted to the variant pattern of the patient's pain-relevant genes. The individual variant pattern of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all "pain genes" would be expensive. Here, we report on the development of a cost-effective next generation sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by identifying the most representative genes. The panel includes 29 key genes that have been shown to cover 70% of the biological functions exerted by a list of 540 so-called "pain genes" derived from transgenic mice experiments. These were supplemented by 43 additional genes that had been independently proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase and cytokine production and secretion. The present genotyping assay was established in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes in the context of the known genetic architecture of pain without seeking functional associations for pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical relevance for pain or in another context. The assay is applicable for small to large-scale experimental setups at contemporary genotyping costs.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, P.O. Box 440, 00029 HUS Helsinki, Finland;
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-4589; Fax: +49-69-6301-4354
| |
Collapse
|
9
|
Yeo J, Sia AT, Sultana R, Sng BL, Tan EC. Analysis of SCN9A Gene Variants for Acute and Chronic Postoperative Pain and Morphine Consumption After Total Hysterectomy. PAIN MEDICINE 2020; 21:2642-2649. [PMID: 32403129 DOI: 10.1093/pm/pnaa109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) of the voltage-gated sodium channel alpha subunit gene (SCN9A) have been associated with pain in various settings. The aim of this study was to investigate the association of the SNPs to evaluate the influence of common gene variants on chronic postoperative pain (CPSP) and other related pain variables in a cohort of patients who underwent a scheduled hysterectomy. METHODS DNA samples from a cohort of 1,075 patients who underwent a scheduled total hysterectomy in our hospital were genotyped for three common SCN9A SNPs using TaqMan assays. Multivariate logistic regression models were used to quantify the association between independent covariates such as pain threshold, pain endurance, pain scores, morphine use, and the presence of chronic pain. RESULTS Frequencies of the minor alleles were different between the different ethnic groups. There was a statistically significant association of rs16851799 with morphine consumption and self-reported postoperative pain for the 1,038 subjects genotyped, with the TT genotype reporting higher pain and using more morphine. For the subpopulation of 446 subjects with chronic pain data, there was a similar association with self-reported postoperative pain and tolerance of pressure pain. Univariate analysis also showed a statistically significant association of rs16851799 with CPSP, whereas multivariable analysis revealed a similar association of rs4387806 with this outcome. There were three haplotypes with different relative frequencies for the CPSP and non-CPSP groups. CONCLUSIONS Our results showed that SCN9A polymorphisms could play a role in acute pain perception and the susceptibility to chronic pain.
Collapse
Affiliation(s)
| | - Alex T Sia
- Department of Women's Anaesthesia, KK Women's and Children's Hospital, Singapore
| | - Rehana Sultana
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Ban Leong Sng
- Department of Women's Anaesthesia, KK Women's and Children's Hospital, Singapore
| | - Ene-Choo Tan
- Research Laboratory, KK Women's and Children's Hospital and Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore
| |
Collapse
|
10
|
Long-Term Prevalence of Sensory Chemotherapy-Induced Peripheral Neuropathy for 5 Years after Adjuvant FOLFOX Chemotherapy to Treat Colorectal Cancer: A Multicenter Cross-Sectional Study. J Clin Med 2020; 9:jcm9082400. [PMID: 32727095 PMCID: PMC7465246 DOI: 10.3390/jcm9082400] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Oxaliplatin is among the most neurotoxic anticancer drugs. Little data are available on the long-term prevalence and consequences of chemotherapy-induced peripheral neuropathy (CIPN), even though the third largest population of cancer survivors is made up of survivors of colorectal cancer. (2) Methods: A multicenter, cross-sectional study was conducted in 16 French centers to assess the prevalence of CIPN, as well as its consequences (neuropathic pain, anxiety, depression, and quality of life) in cancer survivors during the 5 years after the end of adjuvant oxaliplatin chemotherapy. (3) Results: Out of 406 patients, the prevalence of CIPN was 31.3% (95% confidence interval: 26.8–36.0). Little improvement in CIPN was found over the 5 years, and 36.5% of patients with CIPN also had neuropathic pain. CIPN was associated with anxiety, depression, and deterioration of quality of life. None of the patients with CIPN were treated with duloxetine (recommendation from American Society of Clinical Oncology), and only 3.2%, 1.6%, and 1.6% were treated with pregabalin, gabapentin, and amitriptyline, respectively. (4) Conclusions: Five years after the end of chemotherapy, a quarter of patients suffered from CIPN. The present study showed marked psychological distress and uncovered a failure in management in these patients.
Collapse
|
11
|
Genomic analysis of 21 patients with corneal neuralgia after refractive surgery. Pain Rep 2020; 5:e826. [PMID: 32766464 PMCID: PMC7390595 DOI: 10.1097/pr9.0000000000000826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background Refractive surgery, specifically laser-assisted in situ keratomileusis and photorefractive keratectomy, are widely applied procedures to treat myopia, hyperopia, and astigmatism. After surgery, a subgroup of cases suffers from persistent and intractable pain of obscure etiology, thought to be neuropathic. We aimed to investigate the contribution of genomic factors in the pathogenesis of these patients with corneal neuralgia. Methods We enrolled 21 cases (6 males and 15 females) from 20 unrelated families, who reported persistent pain (>3 months), after refractive surgery (20 laser-assisted in situ keratomileusis and 1 photorefractive keratectomy patients). Whole-exome sequencing and gene-based association test were performed. Results Whole-exome sequencing demonstrated low-frequency variants (allele frequency < 0.05) in electrogenisome-related ion channels and cornea-expressed collagens, most frequently in SCN10A (5 cases), SCN9A (4 cases), TRPV1 (4 cases), CACNA1H and CACNA2D2 (5 cases each), COL5A1 (6 cases), COL6A3 (5 cases), and COL4A2 (4 cases). Two variants, p.K655R of SCN9A and p.Q85R of TRPV1, were previously characterized as gain-of-function. Gene-based association test assessing "damaging" missense variants against gnomAD exome database (non-Finnish European or global), identified a gene, SLC9A3R1, with statistically significant effect (odds ratio = 17.09 or 17.04; Bonferroni-corrected P-value < 0.05). Conclusion These findings in a small patient cohort did not identify a common gene/variant among most of these cases, as found in other disorders, for example small-fiber neuropathy. Further studies of these candidate genes/variants might enhance understanding of the role of genetic factors in the pathogenesis of corneal neuralgia.
Collapse
|
12
|
Sałat K. Chemotherapy-induced peripheral neuropathy-part 2: focus on the prevention of oxaliplatin-induced neurotoxicity. Pharmacol Rep 2020; 72:508-527. [PMID: 32347537 PMCID: PMC7329798 DOI: 10.1007/s43440-020-00106-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is regarded as one of the most common dose-limiting adverse effects of several chemotherapeutic agents, such as platinum derivatives (oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib. CIPN affects more than 60% of patients receiving anticancer therapy and although it is a nonfatal condition, it significantly worsens patients' quality of life. The number of analgesic drugs used to relieve pain symptoms in CIPN is very limited and their efficacy in CIPN is significantly lower than that observed in other neuropathic pain types. Importantly, there are currently no recommended options for effective prevention of CIPN, and strong evidence for the utility and clinical efficacy of some previously tested preventive therapies is still limited. METHODS The present article is the second one in the two-part series of review articles focused on CIPN. It summarizes the most recent advances in the field of studies on CIPN caused by oxaliplatin, the third-generation platinum-based antitumor drug used to treat colorectal cancer. Pharmacological properties of oxaliplatin, genetic, molecular and clinical features of oxaliplatin-induced neuropathy are discussed. RESULTS Available therapies, as well as results from clinical trials assessing drug candidates for the prevention of oxaliplatin-induced neuropathy are summarized. CONCLUSION Emerging novel chemical structures-potential future preventative pharmacotherapies for CIPN caused by oxaliplatin are reported.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Kraków, Poland.
| |
Collapse
|
13
|
Chang H, Tao YL, Jiang W, Chen C, Liu SL, Ye WJ, Gao YH. Optimize the dose of oxaliplatin for locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy followed by radical surgery and adjuvant chemotherapy. BMC Cancer 2020; 20:498. [PMID: 32487091 PMCID: PMC7268650 DOI: 10.1186/s12885-020-06988-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background Addition of oxaliplatin to capecitabine remains controversial for locally advanced rectal cancer (LARC). And cumulative oxaliplatin dose (COD) varied among clinical trials showing different therapeutic effects of this regimen. The objective of this study was to explore how COD affected tumor metastasis and patient survival. Methods Totally 388 patients diagnosed with stage cII-III rectal cancer and treated with neoadjuvant chemoradiotherapy followed by radical surgery plus adjuvant chemotherapy were consecutively enrolled into this study and retrospectively reviewed. After grouping by total chemotherapy cycle (TCC), influences of COD on adverse effects and patients’ survivals were analyzed in each group. Univariate and multivariate survival analyses were performed through Kaplan-Meier approach and COX proportional hazards model, respectively. Age, gender, anemia, differentiation, carcinoembryonic antigen, carbohydrate antigen 19–9, pretreatment clinical stage and postsurgical pathologic stage were used as covariates. Results COD < 460 mg/m2 emerged as an independent predictor of poorer overall, metastasis-free and disease-free survivals, in patients treated with TCC ≤ 7. The hazard ratios were 1.972, 1.763 and 1.637 (P values were 0.021, 0.028 and 0.041), respectively. But it was note-worthy that COD ≥460 mg/m2 increased incidence of acute toxicities from 38.4 to 70.8% (P < 0.001). And in patients treated with TCC ≥ 8, COD failed to be a prognosticator. Conclusions For LARC patients treated with insufficient TCC (≤ 7), oxaliplatin of ≥460 mg/m2 might be needed to improve survival, though it might resulted in more acute toxicities.
Collapse
Affiliation(s)
- Hui Chang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ya-Lan Tao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wu Jiang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shi-Liang Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei-Jun Ye
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Yuan-Hong Gao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Tanabe Y, Shiraishi S, Hashimoto K, Ikeda K, Nishizawa D, Hasegawa J, Shimomura A, Ozaki Y, Tamura N, Yunokawa M, Yonemori K, Takano T, Kawabata H, Tamura K, Fujiwara Y, Shimizu C. Taxane-induced sensory peripheral neuropathy is associated with an SCN9A single nucleotide polymorphism in Japanese patients. BMC Cancer 2020; 20:325. [PMID: 32295642 PMCID: PMC7161266 DOI: 10.1186/s12885-020-06834-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/06/2020] [Indexed: 12/26/2022] Open
Abstract
Background Sodium channels located in the dorsal root ganglion, particularly Nav1.7 and Nav1.8, encoded by SCN9A and SCN10A, respectively, act as molecular gatekeepers for pain detection. Our aim was to determine the association between TIPN and SCN9A and SCN10A polymorphisms. Methods Three single nucleotide polymorphisms (SNPs) in SCN9A and two in SCN10A were investigated using whole-genome genotyping data from 186 Japanese breast or ovarian cancer patients classified into two groups as follows: cases that developed taxane-induced grade 2–3 neuropathy (N = 108) and controls (N = 78) with grade 0–1 neuropathy. Multiple logistic regression analyses were conducted to evaluate associations between TIPN and SNP genotypes. Results SCN9A-rs13017637 was a significant predictor of grade 2 or higher TIPN (odds ratio (OR) = 3.463; P = 0.0050) after correction for multiple comparisons, and precision was improved when only breast cancer patients were included (OR 5.053, P = 0.0029). Moreover, rs13017637 was a significant predictor of grade 2 or higher TIPN 1 year after treatment (OR 3.906, P = 0.037), indicating its contribution to TIPN duration. Conclusion SCN9A rs13017637 was associated with the severity and duration of TIPN. These findings are highly exploratory and require replication and validation prior to any consideration of clinical use.
Collapse
Affiliation(s)
- Yuko Tanabe
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan. .,Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
| | - Seiji Shiraishi
- Department of Anesthesiology, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa-shi, Chiba, 272-8516, Japan
| | - Kenji Hashimoto
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Yukinori Ozaki
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Nobuko Tamura
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Mayu Yunokawa
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kan Yonemori
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshimi Takano
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasuhiro Fujiwara
- Department of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Chikako Shimizu
- Department of Breast Medical Oncology, Comprehensive Cancer Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
15
|
Chang WT, Gao ZH, Li SW, Liu PY, Lo YC, Wu SN. Characterization in Dual Activation by Oxaliplatin, a Platinum-Based Chemotherapeutic Agent of Hyperpolarization-Activated Cation and Electroporation-Induced Currents. Int J Mol Sci 2020; 21:ijms21020396. [PMID: 31936301 PMCID: PMC7014111 DOI: 10.3390/ijms21020396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022] Open
Abstract
Oxaliplatin (OXAL) is regarded as a platinum-based anti-neoplastic agent. However, its perturbations on membrane ionic currents in neurons and neuroendocrine or endocrine cells are largely unclear, though peripheral neuropathy has been noted during its long-term administration. In this study, we investigated how the presence of OXAL and other related compounds can interact with two types of inward currents; namely, hyperpolarization-activated cation current (Ih) and membrane electroporation-induced current (IMEP). OXAL increased the amplitude or activation rate constant of Ih in a concentration-dependent manner with effective EC50 or KD values of 3.2 or 6.4 μM, respectively, in pituitary GH3 cells. The stimulation by this agent of Ih could be attenuated by subsequent addition of ivabradine, protopine, or dexmedetomidine. Cell exposure to OXAL (3 μM) resulted in an approximately 11 mV rightward shift in Ih activation along the voltage axis with minimal changes in the gating charge of the curve. The exposure to OXAL also effected an elevation in area of the voltage-dependent hysteresis elicited by long-lasting triangular ramp. Additionally, its application resulted in an increase in the amplitude of IMEP elicited by large hyperpolarization in GH3 cells with an EC50 value of 1.3 μM. However, in the continued presence of OXAL, further addition of ivabradine, protopine, or dexmedetomidine always resulted in failure to attenuate the OXAL-induced increase of IMEP amplitude effectively. Averaged current-voltage relation of membrane electroporation-induced current (IMEP) was altered in the presence of OXAL. In pituitary R1220 cells, OXAL-stimulated Ih remained effective. In Rolf B1.T olfactory sensory neurons, this agent was also observed to increase IMEP in a concentration-dependent manner. In light of the findings from this study, OXAL-mediated increases of Ih and IMEP may coincide and then synergistically act to increase the amplitude of inward currents, raising the membrane excitability of electrically excitable cells, if similar in vivo findings occur.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan;
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan 71004, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Zi-Han Gao
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (Z.-H.G.); (S.-W.L.)
| | - Shih-Wei Li
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (Z.-H.G.); (S.-W.L.)
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Division of Cardiovascular Medicine, Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan 70401, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan; (Z.-H.G.); (S.-W.L.)
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence:
| |
Collapse
|
16
|
Delmotte JB, Beaussier H, Auzeil N, Massicot F, Laprévote O, Raymond E, Coudoré F. Is quantitative sensory testing helpful in the management of oxaliplatin neuropathy? a two-year clinical study. Cancer Treat Res Commun 2018; 17:31-36. [PMID: 30343217 DOI: 10.1016/j.ctarc.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE To better understand how quantitative sensory testing could help the clinician in the management of oxaliplatin-induced peripheral neuropathy in terms of earlier and more reliable detection, we conducted a two-year prospective study. METHODS Thermal sensory assessment, tactile sensory assessment, neuropathic pain assessment and adverse events gradation (NCI-CTC) were performed during treatment and 6 months after treatment completion. RESULTS 35 patients were enrolled and followed-up during one year. Cold and Warm Detection Thresholds were higher 6 months after treatment completion than at enrollment. Mechanical detection thresholds didn't change significantly. Neurotoxicity was mostly grade-1, only 18% grade-2 and no grade-3. Grade-2 patients received lower oxaliplatin cumulative dose than grade-1, which reveals effective dose adaptation and grade-2 patients were more likely to develop painful neuropathy. CONCLUSION Thermal thresholds impairment emerges too late to help the clinician in the prophylaxis of neuropathy. Management of OXA-treatment based on NCI-CTC, as currently recommended, remains the best way to detect neuropathy and ensure treatment adaptation.
Collapse
Affiliation(s)
- J B Delmotte
- Clinical Research Center, Paris Saint Joseph Hospital, 185 rue Raymond Losserand, Paris, France.
| | - H Beaussier
- Clinical Research Center, Paris Saint Joseph Hospital, 185 rue Raymond Losserand, Paris, France
| | - N Auzeil
- UMR8638, Sorbonne Paris Cité University, Faculty of Pharmacy, Paris, France
| | - F Massicot
- UMR8638, Sorbonne Paris Cité University, Faculty of Pharmacy, Paris, France
| | - O Laprévote
- UMR8638, Sorbonne Paris Cité University, Faculty of Pharmacy, Paris, France
| | - E Raymond
- Oncology Department, Paris Saint Joseph Hospital, Paris, France
| | - F Coudoré
- CESP/INSERM UMR-S 1178, Paris-Sud Saclay University, Faculty of Pharmacy, Châtenay-Malabry, France; Biology Unit, Paris Saint Joseph Hospital, Paris, France
| |
Collapse
|
17
|
Kim SH, Kim W, Kim JH, Woo MK, Baek JY, Kim SY, Chung SH, Kim HJ. A Prospective Study of Chronic Oxaliplatin-Induced Neuropathy in Patients with Colon Cancer: Long-Term Outcomes and Predictors of Severe Oxaliplatin-Induced Neuropathy. J Clin Neurol 2018; 14:81-89. [PMID: 29629544 PMCID: PMC5765261 DOI: 10.3988/jcn.2018.14.1.81] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose The objective of this study was to determine the incidence and long-term outcomes of oxaliplatin-induced peripheral neuropathy (OIPN), as well as predictors of its severe form. Methods Sixty-nine patients who were taking oxaliplatin for colon cancer were prospectively followed prior to starting chemotherapy and after 4, 8, and 12 cycles of chemotherapy. Thirty-six patients completed the follow-up at 1 year after the end of chemotherapy. The patients were assessed using clinical assessment scales and nerve conduction studies (NCS) at each follow-up visit. Results By applying the National Cancer Institute Common Toxicity criteria, OIPN was classified as grade 1 in 30 (44%) patients, grade 2 in 25 (36%), and grade 3 in 10 (14%) at the completion of therapy. At 1 year after the treatment, OIPN of grades 1, 2, and 3 was found in 50, 3, and 11% of the patients, respectively. Multivariate analysis showed that reductions of the amplitude of the sensory action potential of >11.5% in the median nerve between baseline and four cycles of chemotherapy (odds ratio=5.603, p=0.031) and of >22.5% in the sural nerve between four and eight cycles of chemotherapy (odds ratio=5.603, p=0.031) were independently associated with the risk of developing grade-3 OIPN. Conclusions While the severity of OIPN can improve after oxaliplatin discontinuation, more than half of the patients in this study still had OIPN at 1 year after discontinuation. Early changes in the NCS results for sensory nerves can predict the development of severe OIPN during treatment.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Woojun Kim
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Ji Hee Kim
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Min Ki Woo
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Ji Yeon Baek
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Sun Young Kim
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Seung Hyun Chung
- Rehabilitation Clinic, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| |
Collapse
|
18
|
Palugulla S, Thakkar DN, Kayal S, Narayan SK, Dkhar SA. Association of Voltage-Gated Sodium Channel Genetic Polymorphisms with Oxaliplatin-Induced Chronic Peripheral Neuropathy in South Indian Cancer Patients. Asian Pac J Cancer Prev 2017; 18:3157-3165. [PMID: 29172294 PMCID: PMC5773806 DOI: 10.22034/apjcp.2017.18.11.3157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Oxaliplatin is a platinum drug active against digestive tract cancers. Among its side effects, peripheral neuropathy
is one of the dose-limiting toxicities. This affects around 50 to 70% of patients but the pathophysiology of development
of oxaliplatin-induced peripheral neuropathy (OXAIPN) remains unclear. Sodium channels (SCNAs) play major role in
neuronal electrical signaling processes and mutations in SCNAs lead to various neuronal diseases involving the central
and peripheral nervous systems. In this study, we evaluated whether SCNA genetic variants might be associated with
risk of chronic OXAIPN in patients with digestive tract cancers treated with oxaliplatin. Methodology: Blood samples
from 228 digestive tract cancer patients who had received oxaliplatin in adjuvant and neoadjuvant or metastatic settings
were obtained and genomic DNA was extracted by phenol-chloroform extraction. Genotyping was performed with
the real-time polymerase chain reaction (RT-PCR) using validated real-time TaqMan single nucleotide polymorphism
(SNP) genotyping assays. Neuropathy was evaluated and graded according to National Cancer Institute Common
Toxicity Criteria (NCI-CTC) version 4.03. Results: We found that the rs6746030 polymorphic variant of SCN9A was
significantly associated with a higher incidence of chronic OXAIPN (GA+AA vs GG: OR=1.8, 95% CI=1.04-3.4, P=0.04;
dominant model) while the rs6754031 variant was linked with a lower incidence (OR=0.45, 95% CI=0.22-0.77, P=0.005;
dominant model). The SCN 10A polymorphic variant was associated with severity of chronic OXAIPN (P=0.006,
OR=2.0, 95% CI=1.2 - 3.3). Conclusion: The results of the present prospective study provide evidence in support of
a causal relationship between chronic OXAIPN and voltage gated sodium channel polymorphisms. However, further
studies from independent groups are required to validate these results.
Collapse
Affiliation(s)
- Sreenivasulu Palugulla
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India.
| | | | | | | | | |
Collapse
|
19
|
Marmiroli P, Riva B, Pozzi E, Ballarini E, Lim D, Chiorazzi A, Meregalli C, Distasi C, Renn CL, Semperboni S, Morosi L, Ruffinatti FA, Zucchetti M, Dorsey SG, Cavaletti G, Genazzani A, Carozzi VA. Susceptibility of different mouse strains to oxaliplatin peripheral neurotoxicity: Phenotypic and genotypic insights. PLoS One 2017; 12:e0186250. [PMID: 29020118 PMCID: PMC5636145 DOI: 10.1371/journal.pone.0186250] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
Peripheral neurotoxicity is one of the most distressing side effects of oxaliplatin therapy for cancer. Indeed, most patients that received oxaliplatin experience acute and/or chronic severe sensory peripheral neuropathy. However, despite similar co-morbidities, cancer stage, demographics and treatment schedule, patients develop oxaliplatin-induced peripheral neurotoxicity with remarkably different severity. This suggests individual genetic variability, which might be used to glean the mechanistic insights into oxaliplatin neurotoxicity. We characterized the susceptibility of different mice strains to oxaliplatin neurotoxicity investigating the phenotypic features of neuropathy and gene expression profiles in dorsal root ganglia of six genetically different mice strains (Balb-c, C57BL6, DBA/2J, AJ, FVB and CD1) exposed to the same oxaliplatin schedule. Differential gene expression in dorsal root ganglia from each mice strain were assayed using a genome-wide expression analysis and selected genes were validated by RT-PCR analysis. The demonstration of consistent differences in the phenotypic response to oxaliplatin across different strains is interesting to allow the selection of the appropriate strain based on the pre-defined read-out parameters. Further investigation of the correlation between gene expression changes and oxaliplatin-induced neurotoxicity phenotype in each strain will be useful to deeper investigate the molecular mechanisms of oxaliplatin neurotoxicity.
Collapse
Affiliation(s)
- Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| | - Beatrice Riva
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elisa Ballarini
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carla Distasi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Cynthia L. Renn
- School of Nursing, Department of Pain and Translational Symptom Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Sara Semperboni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lavinia Morosi
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Massimo Zucchetti
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Susan G. Dorsey
- School of Nursing, Department of Pain and Translational Symptom Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Armando Genazzani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valentina A. Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
20
|
Witzig TE, Johnston PB, LaPlant BR, Kurtin PJ, Pederson LD, Moore Jr DF, Nabbout NH, Nikcevich DA, Rowland KM, Grothey A. Long-term follow-up of chemoimmunotherapy with rituximab, oxaliplatin, cytosine arabinoside, dexamethasone (ROAD) in patients with relapsed CD20+ B-cell non-Hodgkin lymphoma: Results of a study of the Mayo Clinic Cancer Center Research Consortium (MCCRC) MC0485 now known as academic and community cancer research united (ACCRU). Am J Hematol 2017; 92:1004-1010. [PMID: 28614905 DOI: 10.1002/ajh.24824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Abstract
Patients with relapsed aggressive non-Hodgkin lymphoma (NHL) are often treated with platinum-based chemoimmunotherapy regimens in preparation for autologous stem cell transplant. We sought to reduce toxicity and maintain efficacy by using oxaliplatin with rituximab, cytarabine and dexamethasone (ROAD) in a phase II clinical trial in patients who had relapsed after one prior regimen. ROAD was delivered q21 days and consisted of rituximab 375 mg/m2 IV weekly x 4 doses (cycle 1 only); dexamethasone 40 mg PO/IV d2 - 5; oxaliplatin 130 mg/m2 IV day 2; cytarabine 2000 mg/m2 IV × two doses on days 2 to 3; and pegfilgrastim 6 mg SC on day 4. Forty-five eligible patients were accrued between 2006 and 2008. Patient characteristics were a median age of 69 years; 96% had received prior rituximab; 53% were within one year of diagnosis. The median number of cycles received was 2 (range, 1-6). Forty-four % received ROAD as an outpatient. The overall response rate was 71% with 27% (12/45) CR and 44% (20/45) PR. Forty-four % (20/45) of all patients and 69% (18/26) of patients whom responded after 2 cycles proceeded to transplant. Median overall survival was 26 mos (95% CI: 7.3 mos-not reached) and median progression-free survival was 11 mos (95% CI: 6-104 mos). There was no grade 3/4 nephrotoxicity; the rate of grade 3/4 neuropathy was 4%. Forty-two percent of all patients and 69% of patients transplanted remain alive at 5 years. ROAD represents an acceptable salvage therapeutic option for patients with relapsed aggressive NHL.
Collapse
Affiliation(s)
- Thomas E. Witzig
- Division of Hematology; Department of Medicine, Mayo Clinic Rochester; Rochester Minnesota
| | - Patrick B. Johnston
- Division of Hematology; Department of Medicine, Mayo Clinic Rochester; Rochester Minnesota
| | - Betsy R. LaPlant
- Division of Biomedical Statistics and Bioinformatics; Department of Health Sciences Research, Mayo Clinic Rochester; Rochester Minnesota
| | - Paul J. Kurtin
- Division of Hematopathology; Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester; Rochester Minnesota
| | - Levi D. Pederson
- Division of Biomedical Statistics and Bioinformatics; Department of Health Sciences Research, Mayo Clinic Rochester; Rochester Minnesota
| | | | | | | | | | - Axel Grothey
- Division of Medical Oncology; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
21
|
Argyriou AA, Bruna J, Genazzani AA, Cavaletti G. Chemotherapy-induced peripheral neurotoxicity: management informed by pharmacogenetics. Nat Rev Neurol 2017; 13:492-504. [PMID: 28664909 DOI: 10.1038/nrneurol.2017.88] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The increasing availability of sophisticated methods to characterize human genetic variation has enabled pharmacogenetic data to be used not only to predict responses to treatment (in the context of so-called personalized medicine), but also to identify patients at high or low risk of specific treatment-related adverse effects. Over the past two decades, extensive attempts have been made to understand the genetic basis of chemotherapy-induced peripheral neurotoxicity (CIPN), one of the most severe non-haematological adverse effects of cancer treatment. Despite substantial efforts, however, the identification of a genetic profile that can detect patients at high risk of CIPN still represents an unmet need, as the information obtained from pharmacogenetic studies published so far is inconsistent at best. Among the reasons for these inconsistencies, methodological flaws and the poor reliability of existing tools for assessing CIPN features and severity are particularly relevant. This Review provides a critical update of the pharmacogenetics of CIPN, focusing on the studies published since 2011. Strategies for improving the reliability of future pharmacogenetic studies of CIPN are also discussed.
Collapse
Affiliation(s)
- Andreas A Argyriou
- Department of Neurology, Saint Andrew's State General Hospital of Patras, Tsertidou 1 Street, 26335, Patras, Greece
| | - Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-ICO l'Hospitalet, Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran i Reynals, 3a planta, Gran Via de l'Hospitalet 199, 08908 Hospitalet de Llobregat, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red (CIBERNED), 09193 Avinguda de Can Domènech, Bellaterra, Spain
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery and Milan Centre for Neuroscience, School of Medicine - University of Milano-Bicocca, via Cadore 48, 20900, Monza (MB), Italy
| |
Collapse
|
22
|
Starobova H, Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci 2017; 10:174. [PMID: 28620280 PMCID: PMC5450696 DOI: 10.3389/fnmol.2017.00174] [Citation(s) in RCA: 395] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle-leading to cell death and tumor degradation-and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia.,School of Pharmacy, University of QueenslandSt Lucia, QLD, Australia
| |
Collapse
|