1
|
Wang X, Zhong L, Zhao Y. Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review). Oncol Rep 2021; 45:49. [PMID: 33760203 PMCID: PMC7934214 DOI: 10.3892/or.2021.8000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Immunogene therapy can enhance the antitumor immune effect by introducing genes encoding co‑stimulation molecules, cytokines, chemokines and tumor‑associated antigens into treatment cells or human cells through genetic engineering techniques. Oncolytic viruses can specifically target tumor cells and replicate indefinitely until they kill tumor cells. If combined with immunogene therapy, oncolytic viruses can play a more powerful antitumor role. The high pressure, hypoxia and acidity in the tumor microenvironment (TME) provide suitable conditions for tumor cells to survive. To maximize the potency of oncolytic viruses, various methods are being developed to promote the reversal of the TME, thereby maximizing transmission of replication and immunogenicity. The aim of the present review was to discuss the basic mechanisms underlying the effects of oncolytic adenoviruses on the TME, and suggest how to combine the modification of the adenovirus with the TME to further combat malignant tumors.
Collapse
Affiliation(s)
- Xiaoxi Wang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Liping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
2
|
Gong Y, Deng J, Wu X. Germline mutations and blood malignancy (Review). Oncol Rep 2020; 45:49-57. [PMID: 33200226 DOI: 10.3892/or.2020.7846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 10/01/2020] [Indexed: 02/05/2023] Open
Abstract
Germline mutations are congenital genetic mutations in germ cells that originate from sperm or ovum and are generally incorporated into every cell of the offspring's body. Somatic mutations are acquired genetic mutations that form under the influence of environmental factors during embryo formation and epigenetic development. Generally, only a portion of the cells in the human body have the same somatic mutations. Clinical detection of germline mutations is intended to determine inherited malignancies and identify high‑risk families, and detection of somatic mutation is proposed to find targeted drugs, monitor tumor loading for guided therapy, and evaluate prognosis. Large‑scale population cohort studies have shown that germline mutations are closely related to the occurrence, development, and prognosis of diseases. Patients with cancer‑predisposition germline mutations can be used as sentinels in high‑risk families. Traditional histopathology is no longer enough to identify types of cancers. Even within a particular type of tumor, there is great heterogeneity between internal molecules. The Pan‑Cancer Research Program as well as other projects seek to use large quantities of data from different types of tumor research databases to carry out integrated analysis in order to establish potential non‑tumor‑specific tumor markers and targets by increasing the sample size to identify more molecular mechanisms. This review intends to summarize some of the relevant mechanisms underlying germline mutations in blood disorders.
Collapse
Affiliation(s)
- Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jili Deng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
3
|
Li Z, Yao Z, Zhang Y, Yao J, Pan Z, Chen J. Polyethylenimine (PEI)-Mediated E1A Increases the Sensitivity of Hepatocellular Carcinoma Cells to Chemotherapy. Med Sci Monit Basic Res 2019; 25:113-120. [PMID: 30956277 PMCID: PMC6475126 DOI: 10.12659/msmbr.914811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to assess the ability of polyethylenimine (PEI) as an E1A plasmid vector to transfect hepatocellular carcinoma SMMC-7721 cells and to analyze the sensitization effect of E1A on various anti-tumor drugs. MATERIAL AND METHODS PEI-mediated recombinant plasmid psv-E1A with high expression of the E1A gene was introduced into hepatocellular carcinoma SMMC-7721 cells, and the effective transfection of E1A gene was determined by RT-PCR and Western blot analysis. The CCK8 method was used to detect the proliferation inhibition of docetaxel, epirubicin, gemcitabine, and 5-fluorouracil on SMMC-7721 cells before and after the transfection of the E1A gene. RESULTS RT-PCR and Western blot analysis showed that PEI could transfect plasmid psv-E1A with stable expression. After the transfection of E1A gene, the sensitivity of SMMC-7721 cells to docetaxel, epirubicin, gemcitabine, and 5-fluorouracil was increased (P<0.05), and the sensitivity to docetaxel was significantly improved (P<0.01). CONCLUSIONS PEI can transfect plasmid psv-E1A. The E1A gene can increase the sensitivity of hepatocellular carcinoma cells to chemotherapeutic drugs. The mechanism may be related to the increased ability of the E1A gene to inhibit proliferation of hepatocellular carcinoma cells and altering the cell cycle of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Zhanfeng Li
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu, China (mainland)
| | - Zhifeng Yao
- Department of Radiotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Oncology, The Third Clinical Medical School of Nanjing Medical University, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yiwen Zhang
- Department of Nursing, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jianxin Yao
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu, China (mainland)
| | - Zhiyao Pan
- Basic Medical Department, Zhejiang University Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Jinfei Chen
- Department of Radiotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Oncology, The Affiliated Taikang Xianlin Drum Tower Hospital of Mount Sinai Hospital, The Affiliated Taikang Xianlin Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|