1
|
Zhu B, Cai Y, Zhou L, Zhao L, Chen J, Shan X, Sun X, You Q, Gong X, Zhang W, Zhu HH, Zhang P, Li Y. Injectable supramolecular hydrogel co-loading abemaciclib/NLG919 for neoadjuvant immunotherapy of triple-negative breast cancer. Nat Commun 2025; 16:687. [PMID: 39814714 PMCID: PMC11735626 DOI: 10.1038/s41467-025-55904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/04/2025] [Indexed: 01/18/2025] Open
Abstract
The efficacy of cancer immunotherapy relies on a sufficient amount of functional immune cells. Triple-negative breast cancer lacks enough immune cell infiltration, and adjuvant therapy is necessary to prime anti-tumor immunity. However, the improvement in efficacy is unsatisfactory with concern about inducing systemic immunotoxicity. Herein, we create an abemaciclib-loaded supramolecular peptide hydrogel formed by peptide-drug amphiphiles for neoadjuvant immunotherapy of triple-negative breast cancer, where the amphiphile is a conjugate of a β-sheet-forming peptide with 1-cyclohexyl-2-(5H-imidazo[5,1-a]isoindol-5-yl)ethanol (NLG919), an inhibitor of indoleamine 2,3-dioxygenase 1. The hydrogel can be injected into the tumor site and retained for at least one week for the sustained release of both abemaciclib and NLG919. The abemaciclib is able to induce immunogenic cell death of cancer cells and increase interleukin-2 secretion by cytotoxic T lymphocytes. Abemaciclib adversely upregulates indoleamine 2,3-dioxygenase 1, whose kynurenine production activity is inhibited by NLG919. The neoadjuvant immunotherapy reduces tumor recurrence and pulmonary metastasis and prolongs the survival of animals. This hydrogel provides a potential platform for neoadjuvant immunotherapy of triple-negative breast cancer with reduced toxicity compared with free abemaciclib.
Collapse
Affiliation(s)
- Binyu Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Pharmaceutical Science, Shandong, China
| | - Lingli Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Jiameng Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Xujie Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China
| | - Qian You
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Wen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Pengcheng Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, China.
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Pharmaceutical Science, Shandong, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Shandong, China.
| |
Collapse
|
2
|
Hao W, Rajendran BK, Cui T, Sun J, Zhao Y, Palaniyandi T, Selvam M. Advances in predicting breast cancer driver mutations: Tools for precision oncology (Review). Int J Mol Med 2025; 55:6. [PMID: 39450552 PMCID: PMC11537269 DOI: 10.3892/ijmm.2024.5447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
In the modern era of medicine, prognosis and treatment, options for a number of cancer types including breast cancer have been improved by the identification of cancer‑specific biomarkers. The availability of high‑throughput sequencing and analysis platforms, the growth of publicly available cancer databases and molecular and histological profiling facilitate the development of new drugs through a precision medicine approach. However, only a fraction of patients with breast cancer with few actionable mutations typically benefit from the precision medicine approach. In the present review, the current development in breast cancer driver gene identification, actionable breast cancer mutations, as well as the available therapeutic options, challenges and applications of breast precision oncology are systematically described. Breast cancer driver mutation‑based precision oncology helps to screen key drivers involved in disease development and progression, drug sensitivity and the genes responsible for drug resistance. Advances in precision oncology will provide more targeted therapeutic options for patients with breast cancer, improving disease‑free survival and potentially leading to significant successes in breast cancer treatment in the near future. Identification of driver mutations has allowed new targeted therapeutic approaches in combination with standard chemo‑ and immunotherapies in breast cancer. Developing new driver mutation identification strategies will help to define new therapeutic targets and improve the overall and disease‑free survival of patients with breast cancer through efficient medicine.
Collapse
Affiliation(s)
- Wenhui Hao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Barani Kumar Rajendran
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Tingting Cui
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Jiayi Sun
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Yingchun Zhao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | | | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India
| |
Collapse
|
3
|
Feng D, Pu D, Ren J, Liu M, Zhang Z, Liu Z, Li J. CD8 + T-cell exhaustion: Impediment to triple-negative breast cancer (TNBC) immunotherapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189193. [PMID: 39413858 DOI: 10.1016/j.bbcan.2024.189193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
CD8+ T-cell exhaustion has been identified as a significant contributor to immunosuppression and immune escape in triple-negative breast cancer (TNBC). Dysfunction due to cell exhaustion is characterized by reduced effector capacity and sustained expression of inhibitory receptors (IRs). The factors contributing to CD8+ T-cell exhaustion are multifaceted, encompassing external influences such as the upregulation of IRs, reduction of effector cytokines, and internal changes within the immune cell, including transcriptomic alterations, epigenetic landscape remodeling, and metabolomic shifts. The impact of the altered TNBC tumor microenvironment (TME) on Tex is also a critical consideration. The production of exhausted CD8+ T-cells (CD8+ Tex) is positively correlated with poor prognosis and reduced response rates to immunotherapy in TNBC patients, underscoring the urgent need for the development of novel TNBC immunotherapeutic strategies that target the mechanisms of CD8+ T-cell exhaustion. This review delineates the dynamic trajectory of CD8+ T-cell exhaustion development in TNBC, provides an update on the latest research advancements in understanding its pathogenesis, and offers insights into potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dandan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dongqing Pu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Jinlu Ren
- Shandong Xiandai University, Jinan 250104, China
| | - Ming Liu
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyong Liu
- Central Laboratory, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China; Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Jinan 250014, China.
| | - Jingwei Li
- Department of Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan 250014, China.
| |
Collapse
|
4
|
Zhang LL, Zhang DJ, Shi JX, Huang MY, Yu JM, Chen XJ, Wei X, Zou L, Lu JJ. Immunogenic cell death inducers for cancer therapy: An emerging focus on natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155828. [PMID: 38905847 DOI: 10.1016/j.phymed.2024.155828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Immunogenic cell death (ICD) is a specific form of regulated cell death induced by a variety of stressors. During ICD, the dying cancer cells release damage-associated molecular patterns (DAMPs), which promote dendritic cell maturation and tumor antigen presentation, subsequently triggering a T-cell-mediated anti-tumor immune response. In recent years, a growing number of studies have demonstrated the potential of natural products to induce ICD and enhance tumor cell immunogenicity. Moreover, there is an increasing interest in identifying new ICD inducers from natural products. PURPOSE This study aimed to emphasize the potential of natural products and their derivatives as ICD inducers to promote research on using natural products in cancer therapy and provide ideas for future novel immunotherapies based on ICD induction. METHOD This review included a thorough search of the PubMed, Web of Science, Scopus, and Google Scholar databases to identify natural products with ICD-inducing capabilities. A comprehensive search for clinical trials on natural ICD inducers was also conducted using ClinicalTrials.gov, as well as the approved patents using the Espacenet and CNKI Patent Database. RESULTS Natural compounds that induce ICD can be categorized into several groups, such as polyphenols, flavonoids, terpenoids, and alkaloids. Natural products can induce the release of DAMPs by triggering endoplasmic reticulum stress, activation of autophagy-related pathways, and reactive oxygen species generation, etc. Ultimately, they activate anti-tumor immune response and improve the efficacy of cancer treatments. CONCLUSION A growing number of ICD inducers from natural products with promising anti-cancer potential have been identified. The detailed information presented in this review will contribute to the further development of natural ICD inducers and cancer treatment strategies based on ICD-induced responses.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Du-Juan Zhang
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jia-Xin Shi
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jia-Mei Yu
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xu-Jia Chen
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiao Wei
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
5
|
Rodríguez IJ, Bernal-Estévez DA, Llano-León M, Bonilla CE, Parra-López CA. Neoadjuvant chemotherapy modulates exhaustion of T cells in breast cancer patients. PLoS One 2023; 18:e0280851. [PMID: 36763585 PMCID: PMC9916600 DOI: 10.1371/journal.pone.0280851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer is the leading cause of cancer deaths in women worldwide. It has been observed that the incidence of breast cancer increases linearly with age after 45, which suggest a link between cancer, aging, and senescence. A growing body of evidence indicates that the immunosuppressive tumor network in breast cancer patients can lead to T-cell exhaustion and senescence. Cytotoxic chemotherapy is a common treatment for many cancers, and it is hypothesized that its efficacy may be related to immune activation. However, the effects of neoadjuvant chemotherapy on T-cell dysfunction in breast cancer patients are not fully understood. This study aimed to evaluate the impact of neoadjuvant chemotherapy on the expression of exhaustion and senescence markers in T cells in women with breast cancer. Our results showed that T cells from breast cancer patients have a reduced ability to respond to stimulation in-vitro and an increased expression of senescence and exhaustion-associated markers, such as TIM-3, LAG3, and CD57. Furthermore, we found that neoadjuvant chemotherapy has an immunomodulatory effect and reduces the expression of exhaustion markers. Our observations of the immune phenotype of T cells during neoadjuvant chemotherapy treatment highlight its ability to stimulate the immune system against cancer. Therefore, monitoring the response of T cells during chemotherapy may enable early prediction of clinical response.
Collapse
Affiliation(s)
- Ivon Johanna Rodríguez
- Departamento de Microbiología, Laboratorio de Inmunología y Medicina Traslacional, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Departamento de Movimiento Corporal Humano, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - David A. Bernal-Estévez
- Immunology and Clinical Oncology Research Group (GIIOC), Fundación Salud de los Andes, Bogotá, Colombia
| | - Manuela Llano-León
- Departamento de Microbiología, Laboratorio de Inmunología y Medicina Traslacional, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Carlos Alberto Parra-López
- Departamento de Microbiología, Laboratorio de Inmunología y Medicina Traslacional, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
6
|
Shi MY, Liu HG, Chen XH, Tian Y, Chen ZN, Wang K. The application basis of immuno-checkpoint inhibitors combined with chemotherapy in cancer treatment. Front Immunol 2023; 13:1088886. [PMID: 36703971 PMCID: PMC9871553 DOI: 10.3389/fimmu.2022.1088886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Immuno-checkpoint inhibitors (ICIs) bring a promising prospect for patients with cancers, which restrains the growth of tumor cells by enhancing anti-tumor activity. Nevertheless, not all patients benefit from the administration of ICIs monotherapy. The partial response or resistance to ICIs is mainly due to the complex and heterogenous tumor microenvironment (TME). The combined therapy is necessary for improving the efficacy of tumor treatment. Chemotherapy is reported not only to kill tumor cells directly, but also to stimulate effective anti-tumor immune responses. Several combined therapies of ICIs and chemotherapeutic agents have been approved for the first-line treatment of cancers, including PD-1/PD-L1 inhibitors. This review summarizes the potential mechanisms of the combined therapy of ICIs and chemotherapeutic agents in inducing immunogenic cell death (ICD) and reprogramming TME, and elucidates the possible anti-tumor effects of combined therapy from the perspective of metabolic reprogramming and microbiome reprogramming.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Wang
- *Correspondence: Ke Wang, ; Zhi-Nan Chen,
| |
Collapse
|
7
|
Zhang J, Pan S, Jian C, Hao L, Dong J, Sun Q, Jin H, Han X. Immunostimulatory Properties of Chemotherapy in Breast Cancer: From Immunogenic Modulation Mechanisms to Clinical Practice. Front Immunol 2022; 12:819405. [PMID: 35069604 PMCID: PMC8766762 DOI: 10.3389/fimmu.2021.819405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy among females. Chemotherapy drugs remain the cornerstone of treatment of BC and undergo significant shifts over the past 100 years. The advent of immunotherapy presents promising opportunities and constitutes a significant complementary to existing therapeutic strategies for BC. Chemotherapy as a cytotoxic treatment that targets proliferation malignant cells has recently been shown as an effective immune-stimulus in multiple ways. Chemotherapeutic drugs can cause the release of damage-associated molecular patterns (DAMPs) from dying tumor cells, which result in long-lasting antitumor immunity by the key process of immunogenic cell death (ICD). Furthermore, Off-target effects of chemotherapy on immune cell subsets mainly involve activation of immune effector cells including natural killer (NK) cells, dendritic cells (DCs), and cytotoxic T cells, and depletion of immunosuppressive cells including Treg cells, M2 macrophages and myeloid-derived suppressor cells (MDSCs). Current mini-review summarized recent large clinical trials regarding the combination of chemotherapy and immunotherapy in BC and addressed the molecular mechanisms of immunostimulatory properties of chemotherapy in BC. The purpose of our work was to explore the immune-stimulating effects of chemotherapy at the molecular level based on the evidence from clinical trials, which might be a rationale for combinations of chemotherapy and immunotherapy in BC.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Jian
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Hao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie Dong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingqing Sun
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Bernal-Estévez DA, Ortíz Barbosa MA, Ortíz-Montero P, Cifuentes C, Sánchez R, Parra-López CA. Autologous Dendritic Cells in Combination With Chemotherapy Restore Responsiveness of T Cells in Breast Cancer Patients: A Single-Arm Phase I/II Trial. Front Immunol 2021; 12:669965. [PMID: 34489928 PMCID: PMC8417880 DOI: 10.3389/fimmu.2021.669965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Animal studies and preclinical studies in cancer patients suggest that the induction of immunogenic cell death (ICD) by neoadjuvant chemotherapy with doxorubicin and cyclophosphamide (NAC-AC) recovers the functional performance of the immune system. This could favor immunotherapy schemes such as the administration of antigen-free autologous dendritic cells (DCs) in combination with NAC-AC to profit as cryptic vaccine immunogenicity of treated tumors. Objective To explore the safety and immunogenicity of autologous antigen-free DCs administered to breast cancer patients (BCPs) in combination with NAC-AC. Materials and Methods A phase I/II cohort clinical trial was performed with 20 BCPs treated with NAC-AC [nine who received DCs and 11 who did not (control group)]. The occurrence of adverse effects and the functional performance of lymphocytes from BCPs before and after four cycles of NAC-AC receiving DCs or not were assessed using flow cytometry and compared with that from healthy donors (HDs). Flow cytometry analysis using manual and automated algorithms led us to examine functional performance and frequency of different lymphocyte compartments in response to a stimulus in vitro. This study was registered at clinicaltrials.gov (NCT03450044). Results No grade II or higher adverse effects were observed associated with the transfer of DCs to patients during NAC-AC. Interestingly, in response to the in vitro stimulation, deficient phosphorylation of Zap70 and AKT proteins observed before chemotherapy in most patients’ CD4 T cells significantly recovered after NAC-AC only in patients who received DCs. Conclusions The transfer of autologous DCs in combination with NAC-AC in BCPs is a safe procedure. That, in BCPs, the administration of DCs in combination with NAC-AC favors the recovery of the functional capacity of T cells suggests that this combination may potentiate the adjuvant effect of ICD induced by NAC-AC on T cells and, hence, potentiate the immunogenicity of tumors as cryptic vaccines.
Collapse
Affiliation(s)
- David A Bernal-Estévez
- Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Bogotá, Colombia
| | - Mauren A Ortíz Barbosa
- Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Bogotá, Colombia
| | - Paola Ortíz-Montero
- Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Bogotá, Colombia
| | - Claudia Cifuentes
- Oncology Department, Hospital Universitario Mayor de Méderi, Bogotá, Colombia
| | - Ramiro Sánchez
- Immunology and Translational Medicine Research Group, Department of Microbiology, Medical School, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos A Parra-López
- Immunology and Translational Medicine Research Group, Department of Microbiology, Medical School, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
9
|
Ortiz-Aguirre JP, Velandia-Vargas EA, Rodríguez-Bohorquez OM, Amaya-Ramírez D, Bernal-Estévez D, Parra-López CA. Inmunoterapia personalizada contra el cáncer basada en neoantígenos. Revisión de la literatura. REVISTA DE LA FACULTAD DE MEDICINA 2021. [DOI: 10.15446/revfacmed.v69n3.81633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Los avances que se han hecho en inmunoterapia contra el cáncer y la respuesta clínica de los pacientes que han recibido este tipo de terapia la han convertido en el cuarto pilar para el tratamiento del cáncer.
Objetivo. Describir brevemente el fundamento biológico de la inmunoterapia personalizada contra el cáncer basada en neoantígenos, las perspectivas actuales de su desarrollo y algunos resultados clínicos de esta terapia.
Materiales y métodos. Se realizó una búsqueda de la literatura en PubMed, Scopus y EBSCO utilizando la siguiente estrategia de búsqueda: tipo de artículos: estudios experimentales originales, ensayos clínicos y revisiones narrativas y sistemáticas sobre métodos de identificación de mutaciones generadas en los tumores y estrategias de inmunoterapia del cáncer con vacunas basadas en neoantígenos; población de estudio: humanos y modelos animales; periodo de publicación: enero 1989- diciembre 2019; idioma: inglés y español; términos de búsqueda: “Immunotherapy”, “Neoplasms”, “Mutation” y “Cancer Vaccines”.
Resultados. La búsqueda inicial arrojó 1344 registros; luego de remover duplicados (n=176), 780 fueron excluidos luego de leer su resumen y título, y se evaluó el texto completo de 338 para verificar cuáles cumplían con los criterios de inclusión, seleccionándose finalmente 73 estudios para análisis completo. Todos los artículos recuperados se publicaron en inglés, y fueron realizados principalmente en EE. UU. (43.83%) y Alemania (23.65%). En el caso de los estudios originales (n=43), 20 se realizaron únicamente en humanos, 9 solo en animales, 2 en ambos modelos, y 12 usaron metodología in silico.
Conclusión. La inmunoterapia personalizada contra el cáncer con vacunas basadas en neoantígenos tumorales se está convirtiendo de forma contundente en una nueva alternativa para tratar el cáncer. Sin embargo, para lograr su implementación adecuada, es necesario usarla en combinación con tratamientos convencionales, generar más conocimiento que contribuya a aclarar la inmunobiología del cáncer, y reducir los costos asociados con su producción.
Collapse
|
10
|
Li TE, Zhang Z, Wang Y, Xu D, Dong J, Zhu Y, Wang Z. A Novel Immunotype-based Risk Stratification Model Predicts Postoperative Prognosis and Adjuvant TACE Benefit in Chinese Patients with Hepatocellular Carcinoma. J Cancer 2021; 12:2866-2876. [PMID: 33854587 PMCID: PMC8040877 DOI: 10.7150/jca.54408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background and Aims: The tumor microenvironment can be divided into inflamed, immune-excluded and immune-desert phenotypes according to CD8+ T cell categories with differential programmed cell death protein 1 (PD-L1) expression. The study aims to construct a novel immunotype-based risk stratification model to predict postsurgical survival and adjuvant trans-arterial chemoembolization (TACE) response in patients with hepatocellular carcinoma (HCC). Methods: A total of 220 eligible HCC patients participated in this study. CD8+ T cell infiltration and PD-L1 expression mode were estimated by immunohistochemical staining. A risk stratification model was developed and virtualized by a nomogram that integrated these independent prognostic factors. The postoperative prognosis and adjuvant TACE benefits were evaluated with a novel immunotype-based risk stratification model. Results: A total of 220 patients were finally identified. Immune-desert, immune-excluded, and inflamed immunotypes represented 45%, 24%, and 31% of HCC, respectively. Univariate and multivariate analyses identified immunotype and PD-L1 expression mode as independent prognostic factors for overall survival time (OS) and recurrence-free survival time (RFS). The nomogram was constructed by integrating immunotype, PD-L1 expression, Barcelona Clinic Liver Cancer (BCLC) stage and tumor grade. The C-index was 0.794 in the training cohort and 0.813 in the validation cohort. A risk stratification system was constructed based on the nomogram classifying HCC patients into 3 risk groups. The average OS times in the low-risk, intermediate-risk and high-risk groups in all cohorts were 77.1 months (95% CI 71.4-82.9), 53.7 months (95% CI 48.2-59.2), and 25.6 months (95% CI 21.4-29.7), respectively. Further analysis showed that OS was significantly improved by adjuvant TACE in the low- and intermediate-risk groups (P=0.041 and P=0.010, respectively) but not in the high-risk group (P=0.398). Conclusion: A novel immunotype-based risk stratification model was built to predict postoperative prognosis and adjuvant TACE benefit in HCC patients. These tools can assist in building a more customized method of HCC treatment.
Collapse
Affiliation(s)
- Tian-En Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Ze Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Yi Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Da Xu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Jian Dong
- Institute of Advanced Surgical Technology and Engineering, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
11
|
Chamucero-Millares JA, Bernal-Estévez DA, Parra-López CA. Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. Cell Immunol 2020; 360:104257. [PMID: 33387685 DOI: 10.1016/j.cellimm.2020.104257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022]
Abstract
Clonal anergy and depletion of antigen-specific CD8+ T cells are characteristics of immunosuppressed patients such as cancer and post-transplant patients. This has promoted translational research on the adoptive transfer of T cells to restore the antigen-specific cellular immunity in these patients. In the present work, we compared the capability of PBMCs and two types of mature monocyte-derived DCs (moDCs) to prime and to expand ex-vivo antigen-specific CD8+ T cells using culture conditioned media supplemented with IL-7, IL-15, and IL-21. The data obtained suggest that protocols involving moDCs are as efficient as PBMCs-based cultures in expanding antigen-specific CD8+ T cell to ELA and CMV model epitopes. These three gamma common chain cytokines promote the expansion of naïve-like and central memory CD8+ T cells in PBMCs-based cultures and the expansion of effector memory T cells when moDCs were used. Our results provide new insights into the use of media supplemented with IL-7, IL-15, and IL-21 for the in-vitro expansion of early-differentiated antigen-specific CD8+ T cells for immunotherapy purposes.
Collapse
Affiliation(s)
- Julián A Chamucero-Millares
- Immunology and Translational Medicine Research Group, Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, South-America, Colombia; Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Calle 44 #58-05, Bogotá, South-America, Colombia.
| | - David A Bernal-Estévez
- Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Calle 44 #58-05, Bogotá, South-America, Colombia
| | - Carlos A Parra-López
- Immunology and Translational Medicine Research Group, Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, South-America, Colombia.
| |
Collapse
|
12
|
Saleh R, Taha RZ, Sasidharan Nair V, Toor SM, Alajez NM, Elkord E. Transcriptomic Profiling of Circulating HLA-DR - Myeloid Cells, Compared with HLA-DR + Myeloid Antigen-presenting Cells. Immunol Invest 2020; 50:952-963. [PMID: 32727251 DOI: 10.1080/08820139.2020.1795875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells with potent immunosuppressive functions, which can inhibit the activation of immune responses under a steady-state condition and pathological conditions. We performed transcriptomic profiling of circulating CD33+HLA-DR+ myeloid antigen-presenting cells (APCs) and CD33+HLA-DR- myeloid cells (potentially MDSCs) in healthy individuals. We sorted both subpopulations from peripheral blood mononuclear cells (PBMCs) of 10 healthy donors and performed RNA sequencing (RNA-Seq). We found that several signaling pathways associated with the positive regulation of immune responses, such as antigen presentation/processing, FcγR-mediated phagocytosis and immune cell trafficking, phosphoinositide 3-kinase (PI3K)/Akt signaling, DC maturation, triggering receptor expressed on myeloid cells 1 (TREM1) signaling, nuclear factor of activated T cells (NFAT) and IL-8 signaling were downregulated in CD33+HLA-DR- myeloid cells. In contrast, pathways implicated in tumor suppression and anti-inflammation, including peroxisome proliferator-activated receptor (PPAR) and phosphatase and tensin homolog (PTEN), were upregulated in CD33+HLA-DR- myeloid cells. These data indicate that PPAR/PTEN axis could be upregulated in myeloid cells to keep the immune system in check in normal physiological conditions. Our data reveal some of the molecular and functional differences between CD33+HLA-DR+ APCs and CD33+HLA-DR- myeloid cells in a steady-state condition, reflecting the potential suppressive function of CD33+HLA-DR- myeloid cells to maintain immune tolerance. For future studies, the same methodological approach could be applied to perform transcriptomic profiling of myeloid subsets in pathological conditions.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
13
|
Saleh R, Toor SM, Taha RZ, Al-Ali D, Sasidharan Nair V, Elkord E. DNA methylation in the promoters of PD-L1, MMP9, ARG1, galectin-9, TIM-3, VISTA and TGF-β genes in HLA-DR - myeloid cells, compared with HLA-DR + antigen-presenting cells. Epigenetics 2020; 15:1275-1288. [PMID: 32419601 PMCID: PMC7678924 DOI: 10.1080/15592294.2020.1767373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myeloid cells, including antigen-presenting cells (APCs) and myeloid-derived suppressor cells (MDSCs) play opposing roles to orchestrate innate and adaptive immune responses during physiological and pathological conditions. We investigated the role of DNA methylation in regulating the transcription of inhibitory/suppressive molecules in myeloid suppressive cells (identified as CD33+HLA-DR-) in comparison to APCs. We selected a number of immune checkpoints (ICs), IC ligands, and immunosuppressive molecules that have been implicated in MDSC function, including PD-L1, TIM-3, VISTA, galectin-9, TGF-β, ARG1 and MMP9. We examined their mRNA expression levels, and investigated whether DNA methylation regulates their transcription in sorted myeloid cell subpopulations. We found that mRNA levels of PD-L1, TIM-3, TGF-β, ARG1 and MMP9 in CD33+HLA-DR- cells were higher than APCs. However, VISTA and galectin-9 mRNA levels were relatively similar in both myeloid subpopulations. CpG islands in the promoter regions of TGF-β1, TIM-3 and ARG1 were highly unmethylated in CD33+HLA-DR-cells, compared with APCs, suggesting that DNA methylation is one of the key mechanisms, which regulate their expression. However, we did not find differences in the methylation status of PD-L1 and MMP9 between CD33+HLA-DR- and APCs, suggesting that their transcription could be regulated via other genetic and epigenetic mechanisms. The promoter methylation status of VISTA was relatively similar in both myeloid subpopulations. This study provides novel insights into the epigenetic mechanisms, which control the expression of inhibitory/suppressive molecules in circulating CD33+HLA-DR- cells in a steady-state condition, possibly to maintain immune tolerance and haemostasis.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | | | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| |
Collapse
|