1
|
Mai X, Chen X, Wang Z, Xian H, Wen Q, Sun G, Wang T. Screening Differentially Expressed Proteins in Areca Nut-Related Oral Squamous Cell Carcinoma Using Tandem Mass Tag Proteomics. Int Dent J 2025:S0020-6539(24)01635-6. [PMID: 39757032 DOI: 10.1016/j.identj.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
OBJECTIVE Areca nut chewing has been associated with a poor prognosis in oral squamous cell carcinoma (OSCC). This study seeks to identify differentially expressed proteins among areca nut-related OSCC,non-areca nut-related OSCC and adjacent normal epithelial tissues, with the aim of providing novel insights for the investigation of areca nut-related OSCC. METHODS Using Tandem mass tag (TMT)-based proteomic analysis, a comparative proteomic profiling was conducted among areca nut-related OSCC, non-areca nut-related OSCC, and adjacent normal epithelial tissues (n=15). GO and KEGG enrichment analyses were then employed to identify significant proteins pertinent to the pathogenesis of OSCC for further study. Western Blot (WB) and Immunohistochemistry (IHC) techniques were used to preliminary validate the expression patterns of LZTS1, MMP10, MYH6, MB, and TNNC1 among various groups (n=30). RESULTS 27 differentially expressed proteins were identified when comparing the areca nut-related OSCC group with both the non-areca nut-related OSCC and normal epithelial tissue groups. Among these, 15 proteins were upregulated, while 12 were downregulated. LZTS1 and MMP10 were included in the upregulated proteins, whereas MYH6, MB, and TNNC1 were downregulated. WB and IHC analyses corroborated the proteomic findings, revealing consistent expression trends for these 5 proteins across the studied groups. CONCLUSION LZTS1, MMP10, MYH6, MB and TNNC1 emerge as promising biomarkers for assessing disease progression, prognosis, and potential targeted therapies in areca nut-related OSCC.
Collapse
Affiliation(s)
- Xiaoqun Mai
- Department of stomatology, Hainan General Hospital, Haikou, China; The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xinyu Chen
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
| | - Zihan Wang
- School of Stomatology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haiyu Xian
- Department of stomatology, Hainan General Hospital, Haikou, China; The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Qitao Wen
- Department of stomatology, Hainan General Hospital, Haikou, China; The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Guanyu Sun
- Department of stomatology, Hainan General Hospital, Haikou, China; The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Tao Wang
- Department of stomatology, Hainan General Hospital, Haikou, China; The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
2
|
Tao Y, Wu Y, Shen R, He S, Miao X. Role of four and a half LIM domain protein 1 in tumors (Review). Oncol Lett 2025; 29:37. [PMID: 39512507 PMCID: PMC11542161 DOI: 10.3892/ol.2024.14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
As a cytoskeletal protein, the four and a half LIM domain protein 1 (FHL1) is widely expressed in various cells, particularly skeletal and cardiac muscle cells. FHL1 is involved in the development of the skeletal muscle and myocardium, regulations of gene transcription and thyroid function, and other physiological processes. Its expression is closely related to numerous diseases, such as skeletal muscle disease and viral infections. With the advances in research, the role of FHL1 in the development of tumors is also being revealed. The mechanism of FHL1 in the regulation of tumor growth is complex and is becoming a research focus. It is also expected to become a potential target for tumor therapy. Therefore, the present article reviewed the progress in research on the role of FHL1 in cancer.
Collapse
Affiliation(s)
- Yun Tao
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Yaxun Wu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Rong Shen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| |
Collapse
|
3
|
Rapado-González Ó, Costa-Fraga N, Bao-Caamano A, López-Cedrún JL, Álvarez-Rodríguez R, Crujeiras AB, Muinelo-Romay L, López-López R, Díaz-Lagares Á, Suárez-Cunqueiro MM. Genome-wide DNA methylation profiling in tongue squamous cell carcinoma. Oral Dis 2024; 30:259-271. [PMID: 36398465 DOI: 10.1111/odi.14444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To provide a comprehensive characterization of DNA methylome of oral tongue squamous cell carcinoma (OTSCC) and identify novel tumor-specific DNA methylation markers for early detection using saliva. MATERIAL AND METHODS Genome-wide DNA methylation analysis including six OTSCC matched adjacent non-tumoral tissue and saliva was performed using Infinium MethylationEPIC array. Differentially methylated levels of selected genes in our OTSCC cohort were further validated using OTSCC methylation data from The Cancer Genome Atlas database (TCGA). The methylation levels of a set of tumor-specific hypermethylated genes associated with a downregulated expression were evaluated in saliva. Receiver operating characteristic (ROC) curves were performed to assess the diagnostic value of DNA methylation markers. RESULTS A total of 25,890 CpGs (20,505 hypomethylated and 5385 hypermethylated) were differentially methylated (DMCpGs) between OTSCC and adjacent non-tumoral tissue. Hypermethylation of 11 tumor-specific genes was validated in OTSCC TCGA cohort. Of these 11 genes, A2BP1, ANK1, ALDH1A2, GFRA1, TTYH1, and PDE4B were also hypermethylated in saliva. These six salivary methylated genes showed high diagnostic accuracy (≥0.800) for discriminating patients from controls. CONCLUSIONS This is the first largest genome-wide DNA methylation study on OTSCC that identifies a group of novel tumor-specific DNA methylation markers with diagnostic potential in saliva.
Collapse
Affiliation(s)
- Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Nicolás Costa-Fraga
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - José Luis López-Cedrún
- Department of Oral and Maxillofacial Surgery, Complexo Hospitalario Universitario de A Coruña (CHUAC, SERGAS), A Coruña, Spain
| | - Roberto Álvarez-Rodríguez
- Department of Pathology, Complexo Hospitalario Universitario de A Coruña (CHUAC, SERGAS), A Coruña, Spain
| | - Ana Belén Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), Santiago de Compostela, Spain
| | - Ángel Díaz-Lagares
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS, SERGAS), Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), Santiago de Compostela, Spain
| |
Collapse
|
4
|
MiR-96-5p Facilitates Lung Adenocarcinoma Cell Phenotypes by Inhibiting FHL1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7891222. [PMID: 36017148 PMCID: PMC9398840 DOI: 10.1155/2022/7891222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/09/2022]
Abstract
Objective FHL1 is understood as a tumor repressor gene in various cancers and a possible target for cancer treatment. We investigated the influences of FHL1 on cell functions as well as its molecular mechanisms in lung adenocarcinoma (LUAD) cells. Methods The miRNA-mRNA modulatory axis was predicted by bioinformatics. The expression levels of FHL1 mRNA and protein in LUAD cells were, respectively, analyzed by qRT-PCR and western blot. Dual luciferase analysis was introduced to verify the interaction between miR-96-5p and FHL1. CCK-8, cell colony formation, and Transwell assays were utilized to analyze proliferation, colony formation, migration, and invasion of A549 cells. Results Expression of FHL1 mRNA and protein in LUAD tissue and cells was downregulated, which was linked with poor prognoses of patients. In addition, FHL1 overexpression could hamper colony formation, proliferation, invasion, and migration of LUAD cells. In addition, dual-luciferase analysis verified miR-96-5p as an upstream regulator of FHL1. Overexpression of miR-96-5p suppressed FHL1 expression in LUAD cells and promoted proliferation, invasion, and migration of LUAD cells, while overexpression of FHL1 could simultaneously restore the above-mentioned promoting effect. Conclusion MiR-96-5p fostered cell malignant behaviors by targeting FHL1. This research uncovered the regulatory mechanism of FHL1 in LUAD and offered optional therapeutic targets for LUAD patients.
Collapse
|
5
|
Liu Y, Wang C, Cheng P, Zhang S, Zhou W, Xu Y, Xu H, Ji G. FHL1 Inhibits the Progression of Colorectal Cancer by Regulating the Wnt/β-Catenin Signaling Pathway. J Cancer 2021; 12:5345-5354. [PMID: 34335951 PMCID: PMC8317513 DOI: 10.7150/jca.60543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose: This study aims to explore the FHL1 expression level in colorectal cancer (CRC) patients, analyze its association with patient survival and investigate the role of FHL1 in CRC. Methods: We used secondary sequencing to profile mRNA expression in CRC tissue and corresponding adjacent normal tissue from four CRC patients. We focus on FHL1 and analyzed the association between its expression level and clinical indicators. Furthermore, we explored the functional role of FHL1 in colorectal cancer tumorigenesis by transfecting cells with siRNA or overexpression plasmids. Results: Hierarchical clustering revealed significantly differentially expressed mRNAs. FHL1 expression was significantly lower in CRC tissue than in adjacent normal tissue as well as in CRC cell lines relative to NCM460. Low FHL1 expression in CRC tissue correlated with poor patient survival. Our data demonstrated that overexpression of FHL1 inhibited the proliferation, colony formation potential, and expression of CdK4 and Cyclin D1, whereas ablating FHL1 promoted their proliferation and colony formation potential, suggesting that FHL1 acts as a tumor suppressor in CRC. Moreover, we showed that FHL1 inhibited the proliferation of colorectal cancer cells by negatively regulating the Wnt/β-catenin signaling pathway. Conclusion: FHL1 is a potential tumor suppressor gene in colorectal cancer, and regulation of the FHL1-Wnt/β-catenin pathway may be part of its antitumor mechanism.
Collapse
Affiliation(s)
- Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chunyan Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Peiqiu Cheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shengan Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yangxian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
6
|
Zhang J, Fu B, Li M, Mi S. Secretome of Activated Fibroblasts Induced by Exosomes for the Discovery of Biomarkers in Non-Small Cell Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004750. [PMID: 33373110 DOI: 10.1002/smll.202004750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Molecules involved in crosstalk between tumor cells and fibroblasts play vital roles in tumor progression. Extracellular matrix proteins, whose abundance is altered after being affected by tumor-derived exosomes, possess considerable promise as biomarkers for diagnosis or prognosis. In this study, quantitative proteomics is employed to determine the abundance of proteins secreted by normal fibroblasts and exosome-activated fibroblasts, which first identify differentially secreted proteins affected by lung cancer cell-derived exosomes. Based on the differentially secreted proteins and multiple independent datasets comprising 1897 patient samples with non-small cell lung carcinoma or other lung diseases, a diagnostic marker is identified that can effectively distinguish tumor tissues from normal tissue, as well as tumor-associated stroma from normal stroma, and a five-gene prognostic signature is presented with independent prognostic impact to identify patients who may require further adjuvant therapy after surgical resection. In addition, the secretome provides novel potential targets for clinical treatment.
Collapse
Affiliation(s)
- Jian Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Bin Fu
- Proteomics Technological Platform, National Center for Proteins Sciences, Beijing, 102206, China
| | - Meng Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuangli Mi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Wei X, Zhang H. Four and a half LIM domains protein 1 can be as a double-edged sword in cancer progression. Cancer Biol Med 2020; 17:270-281. [PMID: 32587768 PMCID: PMC7309467 DOI: 10.20892/j.issn.2095-3941.2019.0420] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/04/2020] [Indexed: 11/18/2022] Open
Abstract
Four and a half LIM domains protein 1 (FHL1), as the name suggests, contains four and a half LIM domains capable of interacting with various molecules, including structural proteins, kinases, and transcriptional machinery. FHL1 contains a zinc-finger domain and performs diverse roles in regulation of gene transcription, cytoarchitecture, cell proliferation, and signal transduction. Several studies have validated the importance of FHL1 in muscle development, myopathy, and cardiovascular diseases. Mutations in the FHL1 gene are associated with various myopathies. Recently, FHL1 was identified as a major host factor for chikungunya virus (CHIKV) infection in both humans and mice. Based on more recent findings over the last decade, FHL1 is proposed to play a dual role in cancer progression. On the one hand, FHL1 expression is suppressed in several cancer types, which correlates with increased metastatic disease and decreased survival. Moreover, FHL1 is reported to inhibit tumor cell growth and migration by associating with diverse signals, such as TGF-β and ER, and therefore considered a tumor suppressor. On the other hand, FHL1 can function as an oncogenic protein that promotes tumor progression upon phosphorylation, reflecting complex roles in cancer. This review primarily focuses on the dual role and underlying mechanisms of action of FHL1 in human cancer progression and its clinical relevance.
Collapse
Affiliation(s)
- Xiaofan Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
8
|
Chen Y, Hei N, Zhao J, Peng S, Yang K, Chen H, Cui Z, Jin L, Sun R, Guo J. A two‐CpG‐based prognostic signature for oral squamous cell carcinoma overall survival. J Cell Biochem 2018; 120:9082-9090. [PMID: 30548666 DOI: 10.1002/jcb.28182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yanping Chen
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Naiheng Hei
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Jianguang Zhao
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Shixiong Peng
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Kaicheng Yang
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - He Chen
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Zifeng Cui
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Linyu Jin
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Ran Sun
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| | - Jingxin Guo
- Oral and Maxillofacial Surgery The Fourth Hospital of Hebei Medical University Shijiazhuang People's Republic of China
| |
Collapse
|