1
|
Lin Z, Zhang Z, Ye X, Zhu M, Li Z, Chen Y, Huang S. Based on network pharmacology and molecular docking to predict the mechanism of Huangqi in the treatment of castration-resistant prostate cancer. PLoS One 2022; 17:e0263291. [PMID: 35594510 PMCID: PMC9122509 DOI: 10.1371/journal.pone.0263291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background
As a kind of traditional Chinese medicine, HQ is widely mentioned in the treatment of cancerous diseases in China, which has been proven to have a therapeutic effect on cancerous diseases, such as prostate cancer. To predict the specific mechanism of HQ in the treatment of CRPC, we will conduct preliminary verification and discussion based on a comprehensive consideration of network pharmacology and molecular docking.
Methods
TCMSP was used to obtain the compounds and reach the effective targets of HQ. The targets of CRPC were reached based on GeneCards database and CTD database. GO and KEGG were utilized for the analysis of overlapping targets. The software of Openbabel was used to convert the formats of ligands and reporters. In addition, molecular docking studies were performed by using the software of Autodock Vina.
Result
It can be seen from the database results that there were 87 active compounds (20 key active compounds) in HQ, and 33 targets were screened out for CRPC treatment. GO and KEGG pathway enrichment analyses identified 81 significant GO terms and 24 significant KEGG pathways. There is a difference in terms of the expression of core protein between cancer patients and healthy people. The expression of core protein in patients also has an impact on the life cycle. The results of molecular docking showed that the docking activity of drug molecules and core proteins was better.
Conclusions
It is concluded from the results of this network pharmacology and molecular docking that HQ makes a multi-target and multi-biological process, and results in the multi-channel synergistic effect on the treatment of CRPC by regulating cell apoptosis, proliferation and metastasis, which still needs further verification by experimental research.
Collapse
Affiliation(s)
- Zesen Lin
- The Second People’s hospital of Zhaoqing, Zhaoqing, China
| | - Zechao Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xuejin Ye
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Min Zhu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- * E-mail:
| | - Zhihong Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yu Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Shuping Huang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Hamdy FC, Donovan JL, Lane JA, Mason M, Metcalfe C, Holding P, Wade J, Noble S, Garfield K, Young G, Davis M, Peters TJ, Turner EL, Martin RM, Oxley J, Robinson M, Staffurth J, Walsh E, Blazeby J, Bryant R, Bollina P, Catto J, Doble A, Doherty A, Gillatt D, Gnanapragasam V, Hughes O, Kockelbergh R, Kynaston H, Paul A, Paez E, Powell P, Prescott S, Rosario D, Rowe E, Neal D. Active monitoring, radical prostatectomy and radical radiotherapy in PSA-detected clinically localised prostate cancer: the ProtecT three-arm RCT. Health Technol Assess 2020; 24:1-176. [PMID: 32773013 PMCID: PMC7443739 DOI: 10.3310/hta24370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer is the most common cancer among men in the UK. Prostate-specific antigen testing followed by biopsy leads to overdetection, overtreatment as well as undertreatment of the disease. Evidence of treatment effectiveness has lacked because of the paucity of randomised controlled trials comparing conventional treatments. OBJECTIVES To evaluate the effectiveness of conventional treatments for localised prostate cancer (active monitoring, radical prostatectomy and radical radiotherapy) in men aged 50-69 years. DESIGN A prospective, multicentre prostate-specific antigen testing programme followed by a randomised trial of treatment, with a comprehensive cohort follow-up. SETTING Prostate-specific antigen testing in primary care and treatment in nine urology departments in the UK. PARTICIPANTS Between 2001 and 2009, 228,966 men aged 50-69 years received an invitation to attend an appointment for information about the Prostate testing for cancer and Treatment (ProtecT) study and a prostate-specific antigen test; 82,429 men were tested, 2664 were diagnosed with localised prostate cancer, 1643 agreed to randomisation to active monitoring (n = 545), radical prostatectomy (n = 553) or radical radiotherapy (n = 545) and 997 chose a treatment. INTERVENTIONS The interventions were active monitoring, radical prostatectomy and radical radiotherapy. TRIAL PRIMARY OUTCOME MEASURE Definite or probable disease-specific mortality at the 10-year median follow-up in randomised participants. SECONDARY OUTCOME MEASURES Overall mortality, metastases, disease progression, treatment complications, resource utilisation and patient-reported outcomes. RESULTS There were no statistically significant differences between the groups for 17 prostate cancer-specific (p = 0.48) and 169 all-cause (p = 0.87) deaths. Eight men died of prostate cancer in the active monitoring group (1.5 per 1000 person-years, 95% confidence interval 0.7 to 3.0); five died of prostate cancer in the radical prostatectomy group (0.9 per 1000 person-years, 95% confidence interval 0.4 to 2.2 per 1000 person years) and four died of prostate cancer in the radical radiotherapy group (0.7 per 1000 person-years, 95% confidence interval 0.3 to 2.0 per 1000 person years). More men developed metastases in the active monitoring group than in the radical prostatectomy and radical radiotherapy groups: active monitoring, n = 33 (6.3 per 1000 person-years, 95% confidence interval 4.5 to 8.8); radical prostatectomy, n = 13 (2.4 per 1000 person-years, 95% confidence interval 1.4 to 4.2 per 1000 person years); and radical radiotherapy, n = 16 (3.0 per 1000 person-years, 95% confidence interval 1.9 to 4.9 per 1000 person-years; p = 0.004). There were higher rates of disease progression in the active monitoring group than in the radical prostatectomy and radical radiotherapy groups: active monitoring (n = 112; 22.9 per 1000 person-years, 95% confidence interval 19.0 to 27.5 per 1000 person years); radical prostatectomy (n = 46; 8.9 per 1000 person-years, 95% confidence interval 6.7 to 11.9 per 1000 person-years); and radical radiotherapy (n = 46; 9.0 per 1000 person-years, 95% confidence interval 6.7 to 12.0 per 1000 person years; p < 0.001). Radical prostatectomy had the greatest impact on sexual function/urinary continence and remained worse than radical radiotherapy and active monitoring. Radical radiotherapy's impact on sexual function was greatest at 6 months, but recovered somewhat in the majority of participants. Sexual and urinary function gradually declined in the active monitoring group. Bowel function was worse with radical radiotherapy at 6 months, but it recovered with the exception of bloody stools. Urinary voiding and nocturia worsened in the radical radiotherapy group at 6 months but recovered. Condition-specific quality-of-life effects mirrored functional changes. No differences in anxiety/depression or generic or cancer-related quality of life were found. At the National Institute for Health and Care Excellence threshold of £20,000 per quality-adjusted life-year, the probabilities that each arm was the most cost-effective option were 58% (radical radiotherapy), 32% (active monitoring) and 10% (radical prostatectomy). LIMITATIONS A single prostate-specific antigen test and transrectal ultrasound biopsies were used. There were very few non-white men in the trial. The majority of men had low- and intermediate-risk disease. Longer follow-up is needed. CONCLUSIONS At a median follow-up point of 10 years, prostate cancer-specific mortality was low, irrespective of the assigned treatment. Radical prostatectomy and radical radiotherapy reduced disease progression and metastases, but with side effects. Further work is needed to follow up participants at a median of 15 years. TRIAL REGISTRATION Current Controlled Trials ISRCTN20141297. FUNDING This project was funded by the National Institute for Health Research Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 37. See the National Institute for Health Research Journals Library website for further project information.
Collapse
Affiliation(s)
- Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - J Athene Lane
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Malcolm Mason
- School of Medicine, University of Cardiff, Cardiff, UK
| | - Chris Metcalfe
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Peter Holding
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Julia Wade
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Sian Noble
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Grace Young
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael Davis
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Tim J Peters
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma L Turner
- Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jon Oxley
- Department of Cellular Pathology, North Bristol NHS Trust, Bristol, UK
| | - Mary Robinson
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - John Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Eleanor Walsh
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Jane Blazeby
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Prasad Bollina
- Department of Urology and Surgery, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - James Catto
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| | - Andrew Doble
- Department of Urology, Addenbrooke's Hospital, Cambridge, UK
| | - Alan Doherty
- Department of Urology, Queen Elizabeth Hospital, Birmingham, UK
| | - David Gillatt
- Department of Urology, Southmead Hospital and Bristol Urological Institute, Bristol, UK
| | | | - Owen Hughes
- Department of Urology, Cardiff and Vale University Health Board, Cardiff, UK
| | - Roger Kockelbergh
- Department of Urology, University Hospitals of Leicester, Leicester, UK
| | - Howard Kynaston
- Department of Urology, Cardiff and Vale University Health Board, Cardiff, UK
| | - Alan Paul
- Department of Urology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Edgar Paez
- Department of Urology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Philip Powell
- Department of Urology, Freeman Hospital, Newcastle upon Tyne, UK
| | - Stephen Prescott
- Department of Urology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Derek Rosario
- Academic Urology Unit, University of Sheffield, Sheffield, UK
| | - Edward Rowe
- Department of Urology, Southmead Hospital and Bristol Urological Institute, Bristol, UK
| | - David Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Academic Urology Group, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Edmunds K, Tuffaha H, Scuffham P, Galvão DA, Newton RU. The role of exercise in the management of adverse effects of androgen deprivation therapy for prostate cancer: a rapid review. Support Care Cancer 2020; 28:5661-5671. [PMID: 32699997 DOI: 10.1007/s00520-020-05637-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Prostate cancer (PCa) is the most commonly diagnosed cancer in Australia, accounting for one quarter of all new cancer diagnoses for males. Androgen deprivation therapy (ADT) is the standard first-line therapy for metastatic PCa but is also used across much of the spectrum of disease. Unfortunately, debilitating adverse effects are a significant and largely unavoidable feature of ADT. A recent systematic review of adverse effects of ADT identified 19 sub-groups classified according to the Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. The potential for multiple simultaneous adverse effects, their associated management and the impact of adverse effects on cancer outcomes and quality of life are important considerations in the treatment and supportive care of men with PCa. Exercise is increasingly being recognized as an efficacious strategy in managing these adverse effects. METHODS A rapid review was undertaken to examine the role of exercise in the management of the most commonly reported ADT adverse effects classified according to the CTCAE sub-groups. A systematic search was conducted in Medline, PsycINFO, Google Scholar and Google for the years 2010 to September 2019 to identify the benefits of exercise in managing the adverse effects of ADT for PCa. RESULTS There is strong evidence for exercise as medicine in addressing several of the adverse effects of PCa such as loss of muscle mass and strength, fatigue and declining physical function. Moderate level evidence for PCa exists for exercise-induced improvements in depression and anxiety, bone loss, and sexual dysfunction. While evidence of the effectiveness of exercise is lacking for many adverse effects of ADT for PCa, evidence in the cancer population as a whole or other clinical populations is strong, and many clinical guidelines recommend exercise as a fundamental part of their clinical management. With the exception of gynaecomastia and breast pain, there is increasing evidence (PCa, cancer or other clinical populations) to suggest that exercise has the potential to reduce and even prevent many of the adverse effects of ADT, thus improving survivorship outcomes for men with PCa. CONCLUSION Exercise has the potential to reduce and even prevent many of the adverse effects of ADT, thus improving survivorship outcomes for men with PCa. The use of exercise for PCa management has the potential to translate into health and economic benefits in improved quality of life and fewer complications, resulting in savings to the health care system, enhanced productivity and reduced patient and carer burden. Exercise thus has the potential to improve quality of life for this population as well as generate significant cost savings.
Collapse
Affiliation(s)
- Kim Edmunds
- Centre for Applied Health Economics, Griffith University, Brisbane, Australia. .,Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| | - Haitham Tuffaha
- Centre for the Business and Economics of Health, University of Queensland, Brisbane, Australia
| | - Paul Scuffham
- Centre for Applied Health Economics, Griffith University, Brisbane, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, Australia.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|